Introduction to Theoretical Particle Physics

Introduction to Theoretical Particle Physics

1/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Introduction to Theoretical Particle Physics Jurgen¨ R. Reuter DESY Theory Group Hamburg, 07/2015 2/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Literature I Georgi: Weak Interactions and Modern Particle Physics, Dover, 2009 I Quigg: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Perseus 1997 I Peskin: An Introduction to Quantum Field Theory Addison Wesly, 1994 I Weinberg, The Quantum Theory of Fields, Vol. I/II/(III) Cambridge Univ. Press, 1995-98 I Itzykson/Zuber, Quantum Field Theory, McGraw-Hill, 1980 I Bohm/Denner/Joos,¨ Gauge Theories of Strong and Electroweak Interactions, Springer, 2000 I Kugo, Eichtheorie, Springer, 2000 (in German) I ...and many more 3/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 ”I have nothing to offer but blood, toil, tears and sweat.” 4/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 ...but it is fun, though.... 5/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Part I (Vorabend) From Lagrangians to Feynman Rules: Quantum Field Theory with Hammer and Anvil 6/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Why Quantum Field Theory? Subatomic realm: typical energies and length scales are of order • (~c) 200MeV fm use of both special relativity and quantum mechanics∼ mandatory· ) Particles (quantum states) are created and destroyed, hence particle • number not constant: beyond unitary time evolution of a single QM system Schrodinger¨ propagator (time-evolution operator) violates • microcausality Scattering on a potential well for relativistic wave equation leads to • unitarity violation Use quantized fields: can be viewed as continuos limit of QM • many-body system with many (discrete) degrees of freedom Least Action Principle leads to classical equations of motion • (Euler-Lagrange equations) @ @ S = dtL = dtd3x = d4x (φ, @ φ) @ L = L L L µ ) µ @(@ φ) @φ Z Z Z µ 7/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 What kind of fields? Classical wave equations must be Lorentz-covariant • Action and Lagrangian (density) are Lorentz scalars • Fields classified according to irreps of Lorentz group • Simplest case: Lorentz scalars (real/complex), Klein-Gordon equation • = (@ φ)∗(@µφ) m2 φ 2 ( + m2)φ (@2 ~ 2 + m2)φ = 0 L µ − j j ) ≡ t − r Spin 1/2 particles: Dirac equation • = iΨ(i=@ + m)Ψ (i=@ m)Ψ = 0 where =a a γµ L ) − ≡ µ 0 σµ γµ = σµ = (1; ~σ)σ ¯µ = (1; ~σ) γµ; γν = 2ηµν 1 σ¯µ 0 − f g γ5 = iγ0γ1γ2γ3 is the chiral projector: = 1 (1 γ5) PL=R 2 ∓ 8/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 The Dawn of gauge theories Spin 1 particles: Maxwell’s equations • 1 = F F µν with F = @ A @ A +g [A ;A ] L −4 µν µν µ ν − ν µ µ ν ) Invariant under (local) gauge transformation, G: 1 A A0 = GA G−1 (@ G)G−1 µ −! µ µ − g µ Electric and magnetic fields are defined via: _ E~ = A~ ~ A g A ; A~ 0 0 µν µν − − r − @µF = 0 i [Aµ;F ] B~ = ~ A~ g A~ h; A~ i − ! r × − 2 × h i µ0 0 = DµF = ~ E~ + g A~ ; E~ r · i 8 0 = D F µi = E_ i + (~h B~ )ii g A ;Ei + g A~ ; B~ < µ − r × − 0 × h i : 8/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 The Dawn of gauge theories Spin 1 particles: Maxwell’s equations • 1 = F F µν with F = @ A @ A +g [A ;A ] L −4 µν µν µ ν − ν µ µ ν ) Invariant under (local) gauge transformation, G: 1 A A0 = GA G−1 (@ G)G−1 µ −! µ µ − g µ Electric and magnetic fields are defined via: _ E~ = A~ ~ A g A ; A~ 0 0 µν µν − − r − @µF = ig [Aµ;F ] B~ = ~ A~ g A~ h; A~ i − ! r × − 2 × h i µ0 0 = DµF = ~ E~ + g A~ ; E~ r · i 8 0 = D F µi = E_ i + (~h B~ )ii g A ;Ei + g A~ ; B~ < µ − r × − 0 × h i : 9/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 ...for the curious... Spin 3/2 particles: Rarita-Schwinger equation • 1 1 = µνρσΨ γ γ @ Ψ mΨ [γµ; γν ]Ψ L 2 µ 5 ν ρ ν − 4 µ ν ) m (=@γν Ψ γν =@Ψ ) = 0 ν − ν γµΨ = 0 @µΨ = 0 (i=@ m)Ψ = 0 µ µ − µ Leads only to sensible theory in supergravity Spin 2 particles: de Donder equation • 4πG = N det g R with R = Rµ ν and L − c4 j j µ ν p Rρ = @ Γρ @ Γρ + Γρ Γλ Γρ Γλ σµν µ νσ − ν µσ µλ νσ − νλ µσ Γρ = 1 gρσ (@ g @ g @ g ) define g = η + 16πG h µν 2 µ νσ − ν µσ − ρ µν µν µν N µν h 1 η hρ = @ @ρ h 1 η hσ + (µ pν) µν − 2 µν ρ µ ρν − 2 ρν σ $ 10/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 How to quantize a field (Analogous to QM) Field and its canonically conjugate momentum: π = @ =@φ_ • L Canonically transform to the Hamiltonian of the system: • @ 2 = π L 1 π2 + 1 ~ φ + 1 m2φ2 H _ − L ! 2 2 r 2 @φ φ_=φ_(φ,π) Impose equal-time commutation relations: • [φ(~x); π(~y)] = iδ3(~x ~y)[φ(~x); φ(~y)] = [π(~x); π(~y)] = 0 − Creation and annihilation operators to diagonalize the Hamiltonian: • y 3 3 0 [a ; a 0 ] = 2E (2π) δ (~p ~p )[a ; a 0 ] = 0 p p p − ~p ~p Heisenberg/interaction picture: (field) operators time dependent • Creation/annihilation operators Fourier coefficients of field operators: • 3 −ik·x y +ik·x d k φ(x) = dk ake + ake dk 3 ≡ (2π) (2Ek) Z Z Z f f 11/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Hamiltonian is a sum of harmonic oscillators: • d3p = E ay a + const: H (2π)3 p p p Z Infinite constant is abandoned by normal ordering renormalization • d3p : := E : ay a : Note: 0 : : 0 = 0 H (2π)3 p p p h O i Z Creation operator creates a 1-particle state with well-defined • momentum (plane wave): ay 0 = p p j i j i Field operator creates a 1-particle state at x: φ(x) 0 = dp eip·x p • j i j i Consider a complex field: R • f −ik·x y +ik·x y −ik·x y +ik·x φ(x) = dk ake + bke ; φ (x) = dk bke + ake Z Z Field operator:f positve frequency modes (e−ik·x) havef annihilation operator for particles, negative frequency modes (e+ik·x) have creation operator for anti-particles a, b are independent, commute (independent Fourier components!) Got rid of negative energies as in classical wave equations • 12/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Microcausality and the Feynman propagator Amplitude for a particle to propagate from y to x: • 4 d p j~x−~yj!1 D(x y) 0 φ(x)φ(y) 0 = e−ip(x−y) e−mj~x−~yj − ≡ h i (2π)4 ∼ Z falls off exponentially outside light cone, but is non-zero Measurement is determined through the commutator: • [φ(x); φ(y)] = D(x y) D(y x) = 0 (for (x y)2 < 0) − − − − Cancellation of causality-violating effects by Feynman prescription: • I Particles propagated into the future (retarded) I Antiparticles propagated into the past (advanced) D(x y) for x0 > y0 D (x y) = − = θ(x0 y0) 0 φ(x)φ(y) 0 F − D(y x) for x0 < y0 − h i − + θ(y0 x0) 0 φ(y)φ(x) 0 0 T [φ(x)φ(y)] 0 − h i ≡ h i Feynman propagator (time-ordered product, causal Green’s function) • p y d4p i x −! D (x y) = e−ip(x−y) = F − (2π)4 p2 m2 + i Z − 13/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 i prescription Solution of wave equation by Fourier transform: • ( + m2)φ(x) = iδ4(x y) F:T: − −! i i φ~(p) = = p2 m2+i (p0 E +i)(p0 + E i) − − p p− 2 2 0 with Ep = + ~p + m p p Prescription tells you +ip0x0 • where to propagate in time: neg. frequ.: e E + i − P +E i P − 0 0 pos. frequ.: e−ip x 13/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 i prescription Solution of wave equation by Fourier transform: • ( + m2)φ(x) = iδ4(x y) F:T: − −! i i φ~(p) = = p2 m2+i (p0 E + i)(p0+E i) − − p p − 2 2 0 with Ep = + ~p + m p p Prescription tells you +ip0x0 • where to propagate in time: neg. frequ.: e E + i − P +E i P − 0 0 pos. frequ.: e−ip x 13/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 i prescription Solution of wave equation by Fourier transform: • ( + m2)φ(x) = iδ4(x y) F:T: − −! i i φ~(p) = = p2 m2+i (p0 E + i)(p0+E i) − − p p − 2 2 0 with Ep = + ~p + m p p Prescription tells you +ip0x0 • where to propagate in time: neg. frequ.: e E + i − P +E i P − 0 0 pos. frequ.: e−ip x 14/89J urgen¨ R. Reuter Theoretical Particle Physics DESY, 07/2015 Quantization of the Dirac field Spin-statistics theorem (Fierz/Luders/Pauli,¨ 1939/40): • I Spin 0; 1; 2;:::: bosons ) commutators 1 3 I Spin 2 ; 2 ;:::: fermions ) anticommutators equal-time anticommutators: (x) ; y(y) = δ(~x ~y)δ • α β − αβ Field operators: • Z X s s −ipx s y s +ipx (x) = dpf apu (p)e + bp v (p)e s Z X s y s +ipx s s −ipx (x) = dpf ap u (p)e + bpv (p)e s Feynman propagator (time-ordered product, causal Green’s function) • 0 (x) (y) 0 for x0 > y0 SF (x y) = − = 0 T (x) (y) 0 − 0 (y) (x) 0 for x0 < y0 − p y d4p i(=p + m) x S (x y) = e−ip(x−y) = F − (2π)4 p2 m2 + i Z − 15/89J urgen¨ R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    123 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us