The POLARBEAR Experiment Probing the Cosmic Microwave Background Polarization

The POLARBEAR Experiment Probing the Cosmic Microwave Background Polarization

The POLARBEAR experiment probing the cosmic microwave background polarization Davide Poletti (APC, Paris) on behalf of the POLARBEAR Collaboration 14 Dec 2015 ! 28th Texas Symposium on Relativistic Astrophysics POLARBEAR Collaboration UC Berkeley UC San Diego KEK McGill University SISSA Brian Barch Chris Aleman Yoshiki Akiba Matt Dobbs Carlo Baccigalupi Yuji Chinone Kam Arnold Takaho Hamada Adam Gilbert Giulio Fabbian Ari Cukierman Matt Atlas Masaya Hasegawa Josh Montgomery Giuseppe Puglisi Tijmen de Haan Darcy Barron Kaori Hattori Graeme Smecher Josquin Errard Tucker Elleflot Masashi Hazumi JAXA Neil Goeckner-Wald George Fuller Yuki Inoue Dalhousie Tomotake Matsumura John Groh Logan Howe Haruki Nishino Scott Chapman UC Irvine Grantland Hall Jon Kaufman Yuuko Segawa Colin Ross Chang Feng Charles Hill Kavon Kazemzadeh Jun-ichi Suzuki Kaja Rotermund William Holzapfel Brian Keating Osamu Tajima Alexei Tikhomirov National Institute Yasuto Hori David Leon Satoru Takakura for Fusion Science Oliver Jeong Lindsay Lowry Sayuri Takatori Lawrence Suguru Takada Adrian Lee Frederick Matsuda Takayuki Tomaru Berkeley NL Mike Myers Martin Navaroli Julian Borrill Reijo Keskitalo Cardiff University Chris Raum Hans Paar Laboratoire Peter Ade Paul Richards Gabriel Rebeiz Astroparticule & Theodore Kisner Blake Sherwin Praween Siritanasak Cosmologie Akito Kusaka NASA Goddard Ian Shirley Nathan Stebor Maude Le Jeune Eric Linder Nathan Miller Julien Peloton Bryan Steinbach Brandon Wilson Kavli IPMU Aritoki Suzuki Amit Yadav Davide Poletti Princeton Radek Stompor Takuro Fujino Zigmund Kermish Nathan Whitehorn Alex Zahn Fumiya Irie Oliver Zahn Nobuhiko Katayama CU Boulder Argonne NL Católica (PUC) Kuniyoshi Mizukami Imperial College Nils Halverson Amy Bender David Boettger Tetsu Yamashita Anne Ducout Greg Jaehnig Rolando Dunner Stephen Feeney David Schenck U. Melbourne Andrew Jaffe Christian Reichardt And many more in years past ✦ B-modes science and measurements ✦ The POLARBEAR experiment ✦ First season’s results ✦ POLARBEAR 2 and Simons array Davide Poletti - POLARBEAR collaboration 3 The Cosmic Microwave Background The CMB: • picture of the 380,000 years old universe • information on the inflationary phase Adapted from NASA/WMAP Temperature anisotropies: • ΛCDM confirmed • Cosmological information exploited Planck Collaboration Davide Poletti - POLARBEAR collaboration 4 The CMB polarization Polarization field ➱ Q, U Stokes parameters ! y Q < 0 ! U > 0 x ! ! Q > 0 ! U < 0 ! ➱ Decomposed in E and B modes Davide Poletti - POLARBEAR collaboration 5 Primordial B-modes Perturbations at the last scattering surface: • Scalar ➱ E only (to linear order) • Tensor ➱ E and B Tensor perturbation after inflation: • r! Energy scale of inflation ( ~1016 GeV for r~0.1)! • nt" Consistency relation (r = - 8 nt) Davide Poletti - POLARBEAR collaboration 6 Lensing B-Modes ESA/Planck Acquaviva and Baccigalupi (2006) D D φ(nˆ)= 2 dD s − (Dnˆ,D) − DDs Different dark! Z energy scenarios d = φ r δE(l; l0)= [E(l0) cos 2' B(l0)sin2' ][l (l l0)]φ(l l0) − l0l − l0l · − − δB(l; l0)= [E(l0)sin2' + B(l0) cos 2' ][l (l l0)]φ(l l0) − l0l l0l · − − Davide Poletti - POLARBEAR collaboration 7 Lensing B-Modes ESA/Planck Acquaviva and Baccigalupi (2006) D D φ(nˆ)= 2 dD s − (Dnˆ,D) − DDs Different dark! Z energy scenarios d = φ r δE(l; l0)= [E(l0) cos 2' B(l0)sin2' ][l (l l0)]φ(l l0) − l0l − l0l · − − δB(l; l0)= [E(l0)sin2' + B(l0) cos 2' ][l (l l0)]φ(l l0) − l0l l0l · − − Davide Poletti - POLARBEAR collaboration 8 Measurements of the BB power spectrum Mar 2014 2015 102 DASI WMAP-9yr CBI QUaD MAXIPOL QUIET-Q BOOMERanG QUIET-W CAPMAP BICEP1-3yr 1 ) 10 2 K µ ) 2 K )( ! 0 π 10 ) ( (2 / /(2 BB l BB ` -1 C 10 l(l+1)C + 1) ⇥ ( ⇥ 10-2 r=0.2 r=0.025 10-3 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 9 Measurements of the BB power spectrum Mar 2014 2015 POLARBEAR! 10 Mar 102 DASI QUaD CBI QUIET-Q MAXIPOL QUIET-W BOOMERanG BICEP1-3yr CAPMAP POLARBEAR 1 WMAP-9yr ) 10 2 K µ ) 2 K )( ! 0 π 10 ) ( (2 / /(2 BB l BB ` -1 C 10 l(l+1)C + 1) POLARBEAR ⇥ ( ⇥ 10-2 r=0.2 r=0.025 10-3 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 10 Measurements of the BB power spectrum Mar 2014 2015 BICEP2! 17 Mar 102 DASI QUaD CBI QUIET-Q MAXIPOL QUIET-W BOOMERanG BICEP1-3yr CAPMAP BICEP2-3yr 1 WMAP-9yr POLARBEAR ) 10 2 K µ ) 2 K )( ! 0 π 10 ) ( (2 / /(2 BB l BB ` -1 C 10 l(l+1)C + 1) BICEP2 POLARBEAR ⇥ ( ⇥ 10-2 r=0.2 r=0.025 10-3 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 11 Measurements of the BB power spectrum Mar 2014 2015 ACTPol! 21 May 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 CAPMAP BICEP2-3yr 10 WMAP-9yr POLARBEAR ACTPol ) QUaD 2 K µ ) 0 2 10 K )( ! π ) ( (2 / -1 /(2 10 BB l BB ` C BICEP2 POLARBEAR -2 l(l+1)C 10 r=0.20 + 1) ⇥ ( ⇥ 10-3 r=0.025 10-4 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 12 Measurements of the BB power spectrum Mar 2014 2015 BICEP2 - Keck Array - Planck! 2 Feb 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 CAPMAP BKP 10 WMAP-9yr POLARBEAR ACTPol ) QUaD 2 K µ ) 0 2 10 K )( ! π ) ( (2 / -1 /(2 10 BB l BB ` C POLARBEAR -2 BKP l(l+1)C 10 + 1) ⇥ ( ⇥ 10-3 10-4 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 13 Measurements of the BB power spectrum Mar 2014 2015 SPTPol! 8 Mar 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 CAPMAP BKP 10 WMAP-9yr SPTpol ACTPol ) QUaD POLARBEAR 2 K µ ) 0 2 10 K )( ! π ) ( (2 / -1 /(2 10 SPTpol BB l BB ` C POLARBEAR -2 BKP l(l+1)C 10 + 1) ⇥ ( r=0.09 ⇥ 10-3 10-4 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 14 Measurements of the BB power spectrum Mar 2014 2015 BICEP2 / Keck! 30 Oct 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 CAPMAP BK14 10 WMAP-9yr SPTpol ) QUaD POLARBEAR 2 K ACTPol µ ) 0 2 10 K )( ! π ) ( (2 / -1 /(2 10 SPTpol BB l BB ` C POLARBEAR -2 BK14 l(l+1)C 10 + 1) ⇥ ( ⇥ r=0.07 10-3 10-4 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 15 Measurements of the BB power spectrum Mar 2014 2015 BICEP2 / Keck! 30 Oct 102 DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr BOOMERanG ACTPol 1 CAPMAP BK14 10 WMAP-9yr SPTpol ) QUaD POLARBEAR 2 K ACTPol µ ) 0 2 10 K )( ! π ) ( (2 / -1 /(2 10 SPTpol BB l BB ` Plus measurementsC through! POLARBEAR cross-correlation!-2 ! BK14 l(l+1)C 10 • SPTPol+ 1) ! ⇥ ( • POLARBEAR⇥ ! r=0.07 -3 • ACTPol! 10 • Planck 10-4 10 100 1000 Multipole Moment, ell Davide Poletti - POLARBEAR collaboration 16 ✦ B-modes science and measurements ✦ The POLARBEAR experiment! ✦ First season’s results ✦ POLARBEAR 2 and Simons array Davide Poletti - POLARBEAR collaboration 17 POLARBEAR experiment • CMB B-modes dedicated experiment • Atacama desert (~5200 m altitude) ‣ Access to 80% of the sky ‣ Dry atmosphere ‣ Targeting both primordial and lensing B-modes Crab Nebula Planck 857GHz (TauA) FIRST SEASON polarization angles calibrator • Period: May 2012 to June 2013 PB1-RA23 HA • Target: PB1-RA12 HA Overlap w/ QUIET, deep integration of Overlap w/ Herschel Herschel Atlas PB1-RA4p5 3 patches 5 deg x 5 deg Overlap w/ QUIET, BOSS Davide Poletti - POLARBEAR collaboration 18 ⇣.✏⇧⌃⌦↵↵⌅↵ ⇤⌥↵⌃↵⇥⌃⌃ 197 IA: azimuth encoder zero-point IE: elevation encoder zero-point TF: telescope flexure that describes the mechanical non-idealities affecting the telescope pointing. The parameters are reconstructed through a linear model assuming similar to the standard mapmaking equation ∆az d = As + n (9.1) ∆el ⇥ where the vector s contains the parameter to be estimated and the noise term is such that its noise correlation is the identity matrix nT n = 1.(9.2) This is equivalent to the assumption that the source does not move during Instrumentalthe design raster scan. Details on the role of each parameter and on the pointing matrix A are discussed in more detail in Errard (2012). The rms residual with between the telescope pointing after the pointing model correction is applied has an amplitude of 17arcsec in both azimuth and elevation, lead- ing to a total rms error of 25arcsec. Measurements of the product of the integrated bandwidth and fractional Array performance throughput, ⇥⇤ were also made from the beam maps observation previ- ously discussed, as well as from earlier test of the receiver in the lab and from elevation nods of the telescope. The fractional throughput is a mea- sure of the percentage of the power seen by a detector from a source at the input of the receiver compared to what would be seen if the detector had perfect efficiency to2.5 Meters that same source. The overall loss is due to expected efficiencies of the detectors and optical componentsPrimary: along the 3.5m optical path. Laboratory measurements of ⇥⇤ are consistent with a ⇥ = 37% given the measured 37GHz integrated bandwidth. Measurements of ⇥⇤ made in the field are consistent with these values. The design bolometer noise equivalent temperatures (NET) of table 9.1 are slightly degraded due to bolometer saturation powers and atmospheric con- ditions. Once the relative gain calibration for a pair of detector is available we can compute the timestream noise in polarization and temperature for the Q or U stokes parameters in individual pixels. Since the two orthogonal antennas in a focal plane pixelHuan (from now Tran on referredTelescope to as top (t) and bottom (b) ) measure two orthogonal polarization, their timestream model is t Hex Module d (t)=gtop [I(nˆ (t)) + Q(nˆ (t)) cos(2⌅(t)) + U(nˆ (t)) sin(2⌅(t))] b d (t)=gbot [I(nˆ (t)) Q(nˆ (t)) cos(2⌅(t)) U(nˆ (t)) sin(2⌅(t))] (9.3) 6mm lenslet Fourier transforming the semi-differenceMicrostrip of the top and bottom detectors Antenna allows us to see how well the unpolarizedFilter atmosphere is suppressed at low frequencies.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us