Molecular Self-Assembly for the preparation of novel nanostructured materials Jorge Rodrigo Magaña Rodríguez Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – SenseObraDerivada 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 3.0. Spain License. UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ MOLECULAR SELF-ASSEMBLY FOR THE PREPARATION OF NOVEL NANOSTRUCTURED MATERIALS JOSÉ RODRIGO MAGAÑA RODRÍGUEZ, 2017 UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ PROGRAMA DE DOCTORAT: NANOCIÈNCIES MOLECULAR SELF-ASSEMBLY FOR THE PREPARATION OF NOVEL NANOSTRUCTURED MATERIALS Memòria presentada per Jose Rodrigo Magaña Rodriguez per optar al títol de doctor per la universitat de Barcelona Directors: Dra. Conxita Solans Marsá Dr. Carlos Rodríguez Abreu Doctorando: Jose Rodrigo Magaña Rodríguez Tutora: Dra. Mª José García-Celma JOSÉ RODRIGO MAGAÑA RODRIGUEZ, 2017 INTRODUCTION Table of Contents RESUMEN EN CASTELLANO ................................................................................................ 1 ABSTRACT .......................................................................................................................... 5 1. INTRODUCTION ......................................................................................................... 9 1.1. BASIC ASPECTS OF MOLECULAR SELF-ASSEMBLY ................................................. 10 1.1.1. Intermolecular interactions .......................................................................... 10 1.1.2. Formation of condensed mesophases: Liquid Crystals ................................. 12 1.1.3. Thermotropic liquid crystals ......................................................................... 12 1.1.4. Lyotropic liquid crystals ................................................................................ 13 1.1.5. Methods for liquid crystal characterization. ................................................ 13 1.2. SURFACTANT SELF-ASSEMBLY. ............................................................................. 16 1.2.1. Phase Behavior of Surfactant systems ......................................................... 19 1.2.2. Glycerol-based surfactants .......................................................................... 22 1.3. CHROMONIC SELF-ASSEMBLY ............................................................................... 23 1.3.1. The exciton theory........................................................................................ 25 1.4. MOLECULAR SELF-ASSEMBLIES AS TEMPLATES FOR NANOSTRUCTURED MATERIALS ........................................................................................................................ 27 1.4.1. Applications of functional materials ............................................................ 28 2. OBJECTIVES .............................................................................................................. 35 3. EXPERIMENTAL ........................................................................................................ 39 3.1. MATERIALS ........................................................................................................... 40 3.1.1. Surfactants ................................................................................................... 40 3.1.2. Dyes.............................................................................................................. 41 3.1.3. Aqueous Components .................................................................................. 48 3.1.4. Organic Phases............................................................................................. 49 3.1.5. Active Molecules .......................................................................................... 49 3.1.6. Other chemicals ........................................................................................... 49 3.2. INSTRUMENTATION .............................................................................................. 49 3.3. METHODS ............................................................................................................. 53 3.3.1. Qualitative Phase Behavior .......................................................................... 53 3.3.2. Quantitative Phase Behavior: Phase Diagram Determination ..................... 53 3.3.3. Phase identification by polarized optical microscopy (POM) ....................... 54 3.3.4. Structural determination of self-assemblies by small and wide X-ray scattering (SAXS/WAXS) ................................................................................................ 54 3.3.5. Determination of the size of particles by dynamic light scattering (DLS) .... 54 3.3.6. Purification of glycerol-based surfactants ................................................... 55 3.3.7. Water/oil interfacial tension determinations .............................................. 55 3.3.8. Preparation of liquid crystal dispersions ...................................................... 56 3.3.9. Encapsulation of active compounds............................................................. 56 3.3.10. High performance liquid chromatography (HPLC) quantification ................ 56 3.3.11. Determination of Ketoprofen solubility........................................................ 57 3.3.12. Encapsulation efficiency ............................................................................... 57 3.3.13. In vitro release assays .................................................................................. 58 3.3.14. Estimation of the dye dimeric constant: The monomer-dimer model ......... 59 3.3.15. Scanning Electron Microscopy (SEM) ........................................................... 60 3.3.16. Transmission Electron Microscopy (TEM) .................................................... 60 3.3.17. Synthesis of dye-templated silica fibers ....................................................... 61 3.3.18. Synthesis of carbon nanofibers .................................................................... 61 3.3.19. Determination of the supercapacitive performances .................................. 61 3.3.20. Determination of the sensing performance ................................................. 62 4. RESULTS AND DISCUSSION ....................................................................................... 65 4.1. PHASE BEHAVIOR OF DI-GLYCEROL BASED TECHNICAL GRADE SURFACTANTS AND APPLICATIONS .................................................................................................................... 66 4.1.1. Qualitative Phase Behavior: Surfactant Selection ........................................ 66 4.1.2. Phase Behavior of the Water/C41V System ................................................. 68 4.1.3. Phase Behavior of water/C41V-NG (No Glycerol) system. ........................... 71 4.1.4. Phase Behavior of the Water/Diglycerol-Monofatty Acid/Diglycerol- Polyfatty Acids System. ................................................................................................. 75 4.1.5. Formation of Liquid Crystalline Nanoparticles (LCN) ................................... 81 4.1.6. Encapsulation of Active Molecules in Hexosome Dispersions and Release Studies …………………………………………………………………………………………………………………90 4.1.7. Summary ...................................................................................................... 95 4.2. PHASE BEHAVIOR AND SELF-ASSEMBLY OF DYES AND APPLICATIONS ................. 97 4.2.1. Phase Behavior of Quinaldine Red Acetate (QR-Ac) .................................... 98 4.2.2. Pyronin Y (PyY) Phase Behavior ................................................................. 112 4.2.3. Self-Assembly of Cationic Carbocyanine Dyes ............................................ 120 4.2.4. Self-Assembly of Alcian Blue (AB): Preliminary Results .............................. 133 4.2.5. Origin of chromonics self-assembly behavior ............................................ 137 4.2.6. Chromonics as templates for hard materials: Silica and Carbon Nanofibers ……………………………………………………………………………………………………………….139 5. CONCLUSIONS ........................................................................................................ 161 6. BIBLIOGRAPHY ....................................................................................................... 167 7. GLOSSARY AND ABBREVIATIONS ........................................................................... 181 8. APPENDIX .............................................................................................................. 189 8.1. SAXS MODELS ..................................................................................................... 190 8.1.1. Cylinder Model ........................................................................................... 190 8.1.2. Core-Shell Cylinder Model .......................................................................... 190 RESUMEN EN CASTELLANO RESUMEN EN CASTELLANO En las últimas décadas, el auto-ensamblaje molecular ha ganado importancia debido a su potencial tecnológico. El estudio de nuevas moléculas con capacidad de formar agregados funcionales es un área de investigación relevante en la ciencia de materiales. Los tensioactivos son los ejemplos más representativos
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages196 Page
-
File Size-