Eigenvalues of Matrices and Graphs

Eigenvalues of Matrices and Graphs

Eigenvalues of Matrices and Graphs Der Fakultät für Mathematik und Informatik der Universität Leipzig eingereichte DISSERTATION zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr.rer.nat.) im Fachgebiet MATHEMATIK vorgelegt von Diplomphysiker Mario Thüne, M.A. geboren am 21.06.1979 in Leinefelde Die Annahme der Dissertation wurde empfohlen von: 1. Prof. Dr. Jürgen Jost (MPI-MiS, Leipzig, Deutschland) 2. Prof. Dr. Leonid Bunimovich (Georgia Tech, Atlanta, USA) Die Verleihung des akademischen Grades erfolgt auf Beschluss des Rates der Fakultät für Mathematik und Informatik vom 27.02.2013 mit dem Gesamtprädikat cum laude. Acknowledgement I would like to thank my supervisor Prof. Dr. Jürgen Jost for his support, his confidence and his patience and first of all for some profound and inspiring lectures. I would also like to thank my colleagues and the staff at the MPI-MIS in Leipzig for their help and kindness. There are many other people who have supported me in various ways. To all of them I would like to express my sincere gratitude. My final thanks are reserved for my family, especially Linda and Hanna. ii Ich widme diese Arbeit meinen Großeltern (dedicated to my grandparents) iii Zusammenfassung Das Zusammenspiel von Spektrum und Struktur von Graphen ist das Thema der drei Kapitel dieser Arbeit. Im ersten Kapitel werden die Eigenwerte von zwei komplexwertigen Ma- trizen, von denen eine die prinzipale Submatrix der anderen ist, in Beziehung gesetzt mit Hilfe eines annihilierenden Polynoms. Dies wird erweitert zu Ma- trizen, deren Einträge Polynome oder rationale Funktionen in Lambda sind. Die Erweiterung kann zudem als Generalisierung anderer bereits bekannter Techniken, die die Verkleinerung einer Matrix ohne Verlust der spektralen In- formation zum Ziel haben, aufgefasst werden. Einige Aspekte, die für die mögliche Anwendung zur Verringerung des numerischen Aufwands gewöhn- licher Eigenwertprobleme relevant sind, werden diskutiert. Das zweite Kapitel betrachtet die Erweiterung des bekannten Konzepts der Equitable Partition auf komplexe Matrizen. Es enthält eine Methode, um ein Eigenproblem in die zwei (im nicht trivialen Fall) kleineren unabhängigen Eigenprobleme des Frontdivisors und des dazu komplementären Faktors zer- legt. Das Verfahren ist einfach, stabil und hat eine Komplexität von O N 2. Für die Behandlung mehrerer solcher Zerlegungen, die geordnet sind im Sinne des "feiner als", wird eine Möglichkeit vorgeschlagen vorhandene Hermitizität zu erhalten. Mögliche Generalisierungen der Equitable Partition werden be- trachtet und ein einfaches Verfahren zum Auffinden einer Equitable Partition einer komplexen Matrix wird angegeben. Das dritte Kapitel behandelt isospektrale und unitär äquivalente Graphen. Vorgestellt wird eine einfache Methode zur Erzeugung von Paaren von unitär äquivalenten Graphen, die sich als eine Verallgemeinerung des bekannten GM- Switchings auffassen lässt. Weiterhin wird eine Algebra betrachtet, die von der Adjazenzmatrix erzeugt wird und in einer ähnlichen Beziehung zur 1- dimensionalen Weisfeiler-Lehman-Methode steht wie die von dieser Matrix erzeugte Algebra kohärenter Konfigurationen zur 2-dimensionalen. Diese Al- gebra enthält unter anderem die Gradmatrix, verschiedene Laplace-Matrizen und die Seidel-Matrix des Graphen. In einfacher Weise können Graphpaare erzeugt werden, die bezüglich dieser Algebra simultan unitär äquivalent sind. iv Abstract The interplay between spectrum and structure of graphs is the recurring theme of the three more or less independent chapters of this thesis. The first chapter provides a method to relate the eigensolutions of two ma- trices, one being the principal submatrix of the other, via an arbitrary an- nihilating polynomial. This is extended to lambda-matrices and to matrices the entries of which are rational functions in one variable. The extension may be interpreted as a possible generalization of other known techniques which aim at reducing the size of a matrix while preserving the spectral information. Several aspects of an application in order to reduce the computational costs of ordinary eigenvalue problems are discussed. The second chapter considers the straightforward extension of the well known concept of equitable partitions to weighted graphs, i.e. complex matrices. It provides a method to divide the eigenproblem into smaller parts corresponding to the front divisor and its complementary factor in an easy and stable way with complexity O N 2. The exploitation of several equitable partitions ordered by refinement is discussed and a suggestion is made that preserves hermiticity if present. Some generalizations of equitable partitions are considered and a basic procedure for finding an equitable partition of complex matrices is given. The third chapter deals with isospectral and unitary equivalent graphs. It introduces a construction for unitary equivalent graphs which contains the well known GM-switching as a special case. It also considers an algebra of graph matrices generated by the adjacency matrix that corresponds to the 1-dimensional Weisfeiler-Lehman stabilizer in a way that mimics the corre- spondence of the coherent closure and the 2-dimensional Weisfeiler-Lehman stabilizer. The algebra contains the degree matrix, the (combinatorial, sign- less and normalized) Laplacian and the Seidel matrix. An easy construction produces graph pairs that are simultaneously unitary equivalent w.r.t. that algebra. v Contents 0 Introduction1 1 Perturbation of Matrices by Adding or Removing Nodes3 1.1 Introduction.............................3 1.2 Matrix Polynomials and Lambda-Matrices............6 1.2.1 Eigenvalues of Polynomial Matrices............6 1.2.2 Linearization of Polynomial Eigenvalue Problems....8 1.2.3 Miscellaneous Facts: Annihilating Polynomials, Trian- gularization and Extension to Rational Functions....9 1.3 Examples Considering Complex Matrices............. 10 1.3.1 First Example: Independent Set............. 10 1.3.2 Second Example: Quadratic Annihilating Polynomial.. 12 1.4 The Main Theorem......................... 15 1.4.1 Useful Identities...................... 15 1.4.2 A Recursion......................... 16 1.4.3 The Associated Lambda-Matrix.............. 17 1.4.4 The Main Theorem for Complex Matrices........ 18 1.4.5 Recovery of Eigenvectors.................. 19 1.5 The Spectrum of a Principal Submatrix............. 19 1.6 Generalization to Lambda-Matrices, Isospectral Graph Reduc- tion and Further Generalizations................. 24 1.6.1 The Main Theorem in the Case of Lambda-Matrices.. 24 1.6.2 Principal Submatrices of Lambda-Matrices........ 25 1.6.3 Isospectral Graph Reduction............... 26 1.6.4 Further Generalizations.................. 28 1.7 Application............................. 30 2 Equitable Partitions 37 2.1 Introduction............................. 37 2.2 Extended Householder Transformations............. 40 2.2.1 Unitary Elementary Matrices............... 40 2.2.2 Extended Householder Matrices.............. 42 2.3 Three Well Known Techniques Using Householder Matrices.. 43 2.3.1 Deflating an Eigenpair................... 43 2.3.2 Deflating a Singular Value................. 43 2.3.3 QR-Decomposition..................... 44 2.4 Block Triangularizing by Equitable Partitions.......... 44 2.4.1 Suitable Indexing...................... 44 vi Contents 2.4.2 Block Triangularization.................. 45 2.4.3 Recovery of Eigenvectors.................. 47 2.4.4 Example........................... 47 2.4.5 Exploiting an Ordered Set of Equitable Partitions.... 49 2.4.6 Discussion.......................... 52 2.5 Generalizations........................... 54 2.5.1 Relaxing the Constant Vector............... 54 2.5.2 Allowing Non Equitable Blocks.............. 55 2.5.3 Separating Row and Column Partition.......... 57 2.5.4 The General Case and Quasi-Equitable Partitions.... 58 2.5.5 Relaxations of Equitable Partitions............ 59 2.6 Finding Equitable Partitions.................... 61 3 Isospectrality of Graphs 64 3.1 Introduction............................. 64 3.2 Isospectral graphs.......................... 65 3.2.1 Seidel-Switching...................... 65 3.2.2 GM-Switching and Q-Switching.............. 66 3.2.3 Further Constructions................... 70 3.3 Algebras of Graph Matrices.................... 72 3.3.1 C-Valued Functions on a Set............... 72 3.3.2 Generalized Adjacency Matrix............... 73 3.3.3 Matrices as Endomorphisms................ 74 3.4 Properties and Constructions................... 75 3.4.1 Simultaneous Unitary Equivalence............ 75 3.4.2 WL0-Closure........................ 77 3.4.3 WL1-Closure........................ 79 3.4.4 WL2-Closure........................ 81 3.4.5 Combined Graph Matrices................. 82 Bibliography 83 vii Chapter 0 Introduction The motivation for this thesis is the utilization of the entire spectrum of matri- ces as a tool for graph and network analysis. Two aspects will be considered. The first one is the wish for exploiting structure in order to save computational costs in the case of large networks. The second aspect is the determination of a network by the spectrum of its representing matrices. Our main interest here are matrices arising from empirical networks. The spectral investigation of those usually employs only selected parts of the spec- trum, prominently the few largest (in modulus) eigenvalues as in the various forms of spectral clustering since those are computable with moderate effort. Using for instance variants of the power iteration, one may

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    96 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us