The remote calibration of instrument transformers S. Rens orcid.org/0000-0001-8428-3893 Dissertation submitted in fulfilment of the requirements for the degree Master of Engineering in Electrical and Electronic Engineering at the North-West University Supervisor: Prof. A.P.J. Rens Co-supervisor: Prof. J.E.W. Holm Graduation ceremony: May 2019 Student number: 23509333 ABSTRACT Successful operation and control of a power system is dependent on the accurate measurement of field data. Each measurement received is the result of a chain of instrumentation and data handling processes, and with each process a certain amount of uncertainty is introduced in the measurement result. Instrument transformers, additional transducers, analog-to-digital (A/D) converters, scaling and conversion procedures, synchrophasor recorders and communication equipment all contribute to the uncertainty in measurement. Errors in this measurement chain can either be systematic, random or installation errors. Instrumentation transformers convert (and isolate) primary power system current and voltage waveforms into standardised instrumentation circuit values (i.e. 110 V and 5 A) for more convenient measurement purposes. Nominal conversion ratios, specified on nameplates, may differ from the actual conversion ratios due to manufacturing, drift over time and environmental conditions. To eliminate biased measurements received from instrument transformers, calibration of instrument transformers should be performed periodically. Traditionally this has been done by means field work creating an out-of-service condition. It is time-consuming, expensive and labour intensive. An opportunity exists due to the increased availability of synchronous data for the idea of remote calibration of instrument transformers. This idea estimates a ratio correction factor (RCF) for the instrument transformers using synchrophasor data over a transmission line. It has been researched and verified through various computer-based simulation studies. In this dissertation the opportunity of remote calibration is investigated through the introduction of real-life measurements using synchrophasor recorders over an emulated transmission line. A measurement model is created within a Matlab® Simulink environment to verify to methodology presented in literature and verified by emulating the waveforms using an OmicronTM 256PlusTM. It was concluded that measurement uncertainty contributed by using real-life synchrophasor recorders does not defy the original ideas of how synchrophasor data can be used to do much more than small-signal stability analysis such as remotely improve the calibration data of instrument transformers. Other contributions to measurement uncertainty should still be investigated in future research aiming at a pragmatic engineering solution to be used by operators of real power systems. Keywords: Instrument transformers, measurement uncertainty, ratio correction factor (RCF), least square estimate (LSE), synchronous data, time-stamping, transmission line parameters, phasor measurement units (PMUs). i TABLE OF CONTENTS Chapter 1: Introduction 1.1 Introduction ....................................................................................................................... 1 1.2 Why accurate instrument transformers are needed ...................................................... 2 1.2.1 Considerations on instrument transformer accuracy .......................................................... 3 1.3 Remote Calibration of instrument transformers: An opportunity brought about by synchrophasors ................................................................................................. 4 1.4 Is the term “calibration” acceptable for remote calibration? ...................................... 5 1.5 Contributions to measurement uncertainty ................................................................... 7 1.6 Benefits of Remote Calibration in Power Systems ........................................................ 7 1.7 Research Goal ................................................................................................................... 7 1.8 Conclusion ......................................................................................................................... 8 Chapter 2: Theoretical principles of Remote Calibration 2.1 Introduction ....................................................................................................................... 9 2.2 The eVolution in power system measurements ............................................................... 9 2.2.1 State estimation ................................................................................................................... 9 2.2.2 Phasor Measurement Units ............................................................................................... 12 2.3 Considerations on metrology ......................................................................................... 15 2.4 Selected topics from the theory of metrology ............................................................... 16 2.5 Instrument transformers ................................................................................................ 19 2.5.1 Measurement accuracy ..................................................................................................... 20 2.5.2 Standard methods for calibration of instrument transformers .......................................... 22 2.5.2.1 Classification of calibration methods ............................................................................... 23 2.5.2.2 Calibration methods of current transformers .................................................................... 24 2.5.2.3 Calibration of voltage transformers .................................................................................. 28 2.5.2.4 Special considerations ...................................................................................................... 33 2.6 Transmission Line Parameters ...................................................................................... 33 2.6.1 Transmission line theory ................................................................................................... 34 ii 2.6.2 Estimation of transmission line parameters ...................................................................... 38 2.7 Conclusion ....................................................................................................................... 38 Chapter 3: Remote Instrument Transformer Calibration 3.1 Introduction: Where the initial idea originated ........................................................... 39 3.2 Remote calibration of instrument transformers by synchronised measurements .................................................................................................................. 41 3.2.1 “Advanced System Monitoring with Phasor Measurements” – M. Zhou ........................ 42 3.2.2 “Synchronised Phasor Measurements Applications in Three-phase Power Systems” – Z. Wu ............................................................................................................................. 47 3.3 Literature reView on remote calibration of instrument transformers ....................... 52 3.3.1 Comparative analysis of different remote calibration approaches ................................... 52 3.3.1.1 Comparison of assumptions needed ................................................................................. 52 3.3.1.2 Comparison of solver method of methodology ................................................................ 53 3.3.2 Comparison on how the methodology was verified/validated ......................................... 54 3.3.2.1 PMU measurement error contribution .............................................................................. 54 3.4 Conclusion ....................................................................................................................... 54 Chapter 4: The opportunity for remote calibration 4.1 Introduction ..................................................................................................................... 55 4.2 How to deriVe the RCF for a remote instrument transformer ................................... 55 4.3 Accurate measurement of transmission line parameters ............................................ 56 4.4 System equations ............................................................................................................. 57 4.5 Estimation of RCFs ......................................................................................................... 59 4.5.1 Least-squares estimation ................................................................................................... 59 4.6 Conclusion ....................................................................................................................... 61 Chapter 5: Verification of methodology 5.1 Introduction ..................................................................................................................... 62 5.2 Transmission line data ................................................................................................... 63 5.2.1 Resistance of the transmission line ................................................................................... 65 iii 5.2.2 Capacitance ....................................................................................................................... 65 5.2.3 Inductance ........................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages109 Page
-
File Size-