DFT Calculation of Electronic Structure: an Introduction Application to K-Edge

DFT Calculation of Electronic Structure: an Introduction Application to K-Edge

DFT calculation of electronic structure: an introduction Application to K-edge XAS Amélie Juhin Sorbonne Université-CNRS (Paris) Slide courtesy : Delphine Cabaret Quanty School 2019 1 About XANES spectroscopy at the K-edge probe of structural and electronic properties of materials local probe: up to 5-10 Å around the absorbing element isotropic spectra isotropic spectra polarized spectra 9 Al K edge Al K edge Al K edge [6] beryl Al 6 6 [6] Al 6 corundum corundum α-Al O 2 3 α-Al2O3 ε //c 3 3 beryl 3 berlinite [4] (BeO)3(Al2O3)(SiO2)6 Normalized absorption (arbit. units) Normalized absorption (arbit. units) Normalized absorption (arbit. units) c Al AlPO4 ε ⊥ 0 0 0 1560 1565 1570 1575 1580 1585 1590 1560 1565 1570 1575 1580 1585 1590 1560 1565 1570 1575 1580 1585 1590 incident X-ray energy (eV) incident X-ray energy (eV) incident X-ray energy (eV) 1 eV shift tremendous amount of information coordination number fingerprint needs for calculations Quanty School 2019 2 About XANES spectroscopy at the K-edge probe of structural and electronic properties of materials selection rules selective probe of empty states localized on the absorber K edge: 1s p transitions (mainly) isotropic spectra isotropic spectra polarized spectra 8 3 Al K edge Cr K edge ruby ε // c Ca K edge corundum 3+ 4 CaC α-Al2O3:Cr 6 α-Al2O3 6 ε ⊥ c 2 exp. 4 exp. with Ca 1s hole exp. 2 no Ca 1s hole with Al 1s hole no Al 1s hole 1 2 calc. Normalized absorption (arbit. units) Normalized absorption (arbit. units) Normalized absorption (arbit. units) nowith Cr Cr 1s 1s hole hole Normalized absorption (arbit. units) no Cr 1s hole calc. calc. 0 0 0 1560 1565 1570 1575 1580 1585 1590 5995 6000 6005 6010 6015 6020 6025 6030 4030 4040 4050 4060 4070 4080 incident X-ray energy (eV) incident X-ray energy (eV) incident X-ray energy (eV) tremendous amount of information with variable core-hole effects Quanty School 2019 3 Modeling of XANES spectroscopy Basic issue: calculation of the absorption cross section for a material, i.e., a system of N electrons + Nat nuclei 2 1 2 σ(~!)=4⇡ ↵ ~! f i δ(Ef Ei ~!) di |h |O| i| − − Xi,f incident x-ray energy operator of the interaction between x-rays and the system initial state: final state: ground state of the system excited state of the system with energy , Ei degenerescence di of energy Ef. weak e- - e- interaction - - strong e - e interaction monoelectronic approach multielectronic approach (LFM) (Density Functional Theory) ex : L2,3 edges of 3d elements ex : K edges Quanty School 2019 4 Part 1 Introduction to electronic structure calculation using DFT Quanty School 2019 5 Basic issue System composed of Nat atoms: N electrons, mass m, charge q < 0, position r (i = 1, …, N) + i Nat nuclei, mass MI, charge qI , position RI (I = 1, …, Nat) Hsyst. = Te + Tnucl + Vnucl nucl + Ve nucl + Ve e − − − N ~2 T = − 2 e 2m ri i=1 X 1 1 q2 Nat 2 Ve e = ~ 2 − 2 4⇡"0 ri rj Tnucl = I i j=i | − | −2MI r X X6 I=1 X 1 qqI Ve nucl = − 4⇡"0 ri RI 1 1 qI qJ i I | − | Vnucl nucl = X X − 2 4⇡"0 RI RJ I J=I X X6 | − | Quanty School 2019 6 Born-Oppenheimer approximation m < MI (m / mproton ≈ 1836) Order of magnitude of the velocity ratio 1 Electron : mv2 = 1Ry ≈ 10 eV 2 e ve MI 10eV vnoy ⇡ m 10meV 1 2 r Nucleus : MI v ~!vib ≈ 10 meV 2 I ⇡ ≈ 103 The nuclear motion is much slower than the electronic motion è separation The nuclei are considered at fixed positions in the electronic motion study Positions RI è parameter Quanty School 2019 7 Born-Oppenheimer approximation Electronic Hamiltonian parameter RI He{ } = Te + Ve e + Ve nucl + Vnucl nucl − − − constant R R R H{ I } { I } = E ( R ) { I } e | n i n { I } | n i Quanty School 2019 8 Multielectronic Schrödinger equation q H n = En n e = | | p4⇡"0 2 2 2 2 ~ ZI e 1 e H = − ri + − + 2m ri RI 2 ri rj i I i j=i ⇣ | − | ⌘ 6 | − | X (i) X X X T (i) V Ve e | {z } nucl − (r , r ,...,|r ; s{z, s ,...,} s ) | {z } n ⌘ n 1 2 N 1 2 N antisymmetric (electrons are fermions) Quanty School 2019 9 Multielectronic Schrödinger equation H n = En n We can solve it for a system of non-interacting electrons ! N (i) (i) (i) (i) H = Hmono with Hmono = T + Vnucl i=1 solution X Hmono φ↵ = ✏↵ φ↵ ↵ =1,..., 1 spinorbital n : Slater determinant (SD) - 1929 build from N spinorbital functions φ↵ Quanty School 2019 10 Slater Determinant Ground state (1) (1) (1) φ1 φ2 ... φN (2) (2) (2) φ1 φ2 ... φN N 1 gs = .... Egs = ✏i pN! .... i=1 (N) (N) (N) X φ φ ... φ 1 2 N Properties : - antisymmetric - Pauli exclusion principle satisfied Quanty School 2019 11 Multielectronic Schrödinger equation H n = En n 2 2 2 2 ~ ZI e 1 e H = − ri + − + 2m ri RI 2 ri rj i I i j=i ⇣ | − | ⌘ 6 | − | X (i) X X X T (i) V Ve e solution | {z } nucl − | {z } | {z } (r , r ,...,r ; s , s ,...,s ) n ⌘ n 1 2 N 1 2 N The Slater determinants form a basis in the N-electrons Hilbert space n: Linear combination of an infinite number of Slater determinants configuration interaction (“brute force”) ↵ ! αmax= 10 è 252 SD CN = max ↵max N = 5 α = 20 è 15, 504 SD N = 20 αmax= 30 è 3, 004, 015 SD N!(↵max N)! max − αmax= 50 è 2, 118, 760 SD Quanty School 2019 12 Mean-field approximation Non-interacting electrons Mean-field approximation Interacting electrons Exact solution : SD Approximative solutions Exact solution : ∞ LC of SD Exact multilelectronic Hamiltonian 2 (i) (i) 1 e H = T + Vnucl + 2 ri rj i i j=i X h i X X6 | − | Ve e − | {z } Effective multielectronic Hamiltonian : mean-field Hamiltonian N e↵ e↵,(i) H = Hmono Solutions : i=1 X Slater ~2 2 determinants with He↵ = − r + V (r)+V e↵ (r) mono 2m nucl Quanty School 2019 13 Mean-field approximation Monoelectronic Schrödinger solved self-consistently (SCF) ~2 2 − r + V (r)+V e↵ (r) φe↵ (r)=✏e↵ φe↵ (r) 2m nucl [⇢] i i i e↵ e↵ with φ φ = δ h i | j i ij N electron density ⇢(r)= φe↵ (r) 2 | i | i=1 X Quanty School 2019 14 Mean-field methods: examples Hartree (H) Hartree-Fock (HF) Density Functional Theory (DFT) Quanty School 2019 15 Hartree (H) - 1927 ~2 2 − r + V (r)+V e↵ (r) φe↵ (r)=✏e↵ φe↵ (r) 2m nucl [⇢] i i i Coulomb interaction 2 ⇢(r0) VH(r)=e dr0 between one electron and r r the electron density Z | − 0| 2 2 N e↵ 2 ~ e↵ e↵ 2 φj (r0) e↵ e↵ e↵ − r φ (r)+V (r)φ (r)+e | | dr0φ (r)=✏ φ (r) 2m i nucl i r r i i i j=1 0 X Z | − | includes a self-interaction term (if i = j) Hartree product Pauli exclusion principle multielectronic = of monoelectronic exchange not taken into account wave function wave functions Quanty School 2019 16 Hartree-Fock (HF) - 1935 exchange included: the multielectronic wave function as a (unique) SD additional term that depends on the spin state and the antisymmetric character of the SD : N e↵ e↵ φj (r0)⇤φi (r0) e↵ δ dr0 φ (r) − sisj r r j j=1 0 X Z | − | strictly compensates the self-interaction term when electrons i and j have the same spin state BUT no correlation between electrons with opposite spins Correlation energy: difference between the exact total energy of N-electrons system and the total energy obtained using HF Quanty School 2019 17 Density functional theory (DFT): definition exact theory for systems of N interacting electrons within an external potential 2 2 2 ~ i 1 e H = − r + Vnucl(ri) + 2m 2 ri rj i i i j=i X X X X6 | − | ext T V (r) Ve e − | {z } | {z } | {z } H n = En n ⇢(r) (r , r ,...,r ; s , s ,...,s ) n ⌘ n 1 2 N 1 2 N Quanty School 2019 18 DFT: Hohenberg and Kohn theorems (1964) The (non-degenerate) ground state electron density uniquely determines (to a constant) ext the external potential ⇢gs(r) V (r) (and thus all the properties of the system). ⇢(r) basic variable There is a universal density functional F [ ⇢ ], not depending explicitly on V ext ( r ) , defined as : F [⇢]=T [⇢]+Ve e[⇢] with ⇢(r)dr = N − Z Quanty School 2019 19 DFT: Hohenberg and Kohn (1964) Total energy E E[⇢]=F [⇢]+ V ext(r)⇢(r)dr ⌘ Z E[ρ] Variational principle Egs ρ ρgs Exact theory but F [⇢]=T [⇢]+Ve e[⇢]=??? question 1 − Quanty School 2019 20 DFT: Kohn and Sham (1965) Hohenberg - Kohn theorems valid for any N-electrons system also valid for N non-interacting electrons (Ve-e= 0) Kohn – Sham ansatz We can find an external potential VKS(r) for a fictitious system of non-interacting electrons, giving the same ground state electron density as the real system Exact theory BUT question 2 VKS(r)=??? Quanty School 2019 21 DFT: Kohn and Sham (1965) Kohn-Sham system of N non-interacting electrons, fictitious in an external potential VKS(r), system: which gives the same gs electron density as the real system Ground state : SD build from N orbitals (monoelectronic) Kohn-Sham orbitals ~2 2 − r + V KS(r) φKS(r) = ✏KS φKS(r) (1) solutions of: 2m ↵ ↵ ↵ ✓ ◆ Kinetic energy of the fictitious system electron density 2 N N ~ KS 2 KS T [⇢]=− φ (r)⇤ φ (r)dr ⇢(r)= φKS(r) 2 s 2m i r i | i | i=1 Z i=1 X X (indice s : « single particle ») F [⇢]=T [⇢]+Ve e[⇢]=Ts[⇢]+Ve e[⇢]+(T [⇢] Ts[⇢]) − − − Quanty School 2019 22 DFT: Kohn and Sham (1965) What we can write as a functional of the electron density in Ve-e : 2 e ⇢(r)⇢(r0) Hartree energy: E [⇢]= dr dr0 H 2 r r Z | − 0| F [⇢]=Ts[⇢]+Ve e[⇢]+(T [⇢] Ts[⇢]) − − = Ts[⇢]+EH[⇢]+(T [⇢] Ts[⇢]+Ve e[⇢] EH[⇢]) − − − Exc[⇢] exchange and correlation energy we partially answered question 1 ! Quanty School 2019 23 DFT: Kohn and Sham (1965) Total energy ext E[⇢]=Ts[⇢]+VH[⇢]+Vxc[⇢]+ V (r)⇢(r)dr Z minimization Ground state total energy variational principle applied to E[ρ] with respect to KS orbitals with the constraint: KS KS φi (r)⇤ φj (r)dr = δij Z ~2 2 − r + V (r)+V (r)+V ext(r) φKS(r) = ✏KS φKS(r) (2) 2m H xc ↵ ↵ ↵ ✓ ◆ exchange and correlation potential δE V = xc xc ⇢(r) Quanty School

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    60 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us