The Poisson Matrix and Kronecker Products

The Poisson Matrix and Kronecker Products

The Poisson matrix and Kronecker Products Tom Lyche University of Oslo Norway The Poisson matrix and Kronecker Products – p. 1/27 Plan for the day Numerical solution of the Poisson problem The finite difference scheme Formulation as a matrix equation Formulation in standard form Ax = b. The Poisson matrix A is block tridiagonal LU factorization of a block tridiagonal matrix Solving the Poisson problem, complexity Kronecker product Relation to Poisson problem Basic properties Eigenvalues and eigenvectors Eigenpairs for the Poisson matrix The Poisson matrix and Kronecker Products – p. 2/27 Numerical solution of the Poisson Problem u=0 u=0 −(u +u ) =f u=0 xx yy u=0 m N, h = 1/(m + 1), vj,k u(jh, kh) ∈ ≈ (m+1)h j,k+1 (jh,kh) kh j-1,k j,k j+1,k 0 j,k-1 0 jh (m+1)h The Poisson matrix and Kronecker Products – p. 3/27 Discrete Equation ′′ g(t h) 2g(t)+ g(t + h) g (t) − − ≈ h2 v j,k+1 v v j-1,k vj,k j+1,k v j,k-1 From differential equation for j,k = 1, 2,...,m 2 ( vj−1,k + 2vj,k vj+1,k)+( vj,k−1 + 2vj,k vj,k+1)= h fj,k (1) − − − − From boundary conditions vj,k = 0 if j = 0, m + 1 or k = 0, m + 1 (2) The Poisson matrix and Kronecker Products – p. 4/27 Matrix Equation T V + V T = h2F 2 1 v11 v12 v11 v12 2 1 1 f11 f12 − + − = 1 2 v21 v22 v21 v22 1 2 9 f21 f22 − − m,m T := T m = tridiag ( 1, 2, 1) R m − − ∈ v11 v1m f11 f1m ··· ··· . Rm,m . Rm,m V := . F := . ∈ ∈ vm1 vmm fm1 fmm ··· ··· 2 (1), (2) TV + VT = h F ⇔ m m 2 TV + VT = T jivik + vjiT ik = l.h.s in (1) = h (F )jk jk X X i=1 i=1 The Poisson matrix and Kronecker Products – p. 5/27 Convert T V + V T = h2F to Ax = b 1,3 2,3 3,3 7 8 9 1,2 2,2 3,2 > 4 5 6 1,1 2,1 3,1 1 2 3 v in grid x in grid j,k i -v j,k+1 -x i+m - 4 -v -x -x v j-1,k vj,k j+1,k i-1 4x i i+1 --> -v j,k-1 -xi-m 4xi xi−1 xi+1 xi−m xi+m = bi − − − − The Poisson matrix and Kronecker Products – p. 6/27 Linear system Ax = b For m = 3 or n = 9 we have the following linear system: 2 4x1 x2 x4 = h f11 − − 2 x1 4x2 x3 x5 = h f21 − − − 2 x2 4x3 x6 = h f31 − − 2 x1 4x4 x5 x7 = h f12 − − − 2 x2 x4 4x5 x6 x8 = h f22 − − − − 2 x3 x5 4x6 x9 = h f32 − − − 2 x4 4x7 x8 = h f13 − − 2 x5 x7 4x8 x9 = h f23 − − − 2 x6 x8 4x9 = h f33 − − The Poisson matrix and Kronecker Products – p. 7/27 Blockstructure of A 4 1 0 1 0 0 0 0 0 − − 1 4 1 0 1 0 0 0 0 − − − 0 1 4 0 0 1 0 0 0 − − 1 0 0 4 1 0 1 0 0 − − − A = 0 1 0 1 4 1 0 1 0 − − − − 0 0 1 0 1 4 0 0 1 − − − 0 0 0 1 0 0 4 1 0 − − 0 0 0 0 1 0 1 4 1 − − − 0 0 0 0 0 1 0 1 4 − − T + 2I I 0 − A = I T + 2I I − − 0 I T + 2I − Block tridiagonal The Poisson matrix and Kronecker Products – p. 8/27 LU-factorization of a tridiagonal matrix d1 c1 1 u1 c1 a2 d2 c2 .. .. . l2 1 . .. .. .. = . .. .. . un−1 cn−1 a −1 d −1 c −1 n n n ln 1 un an dn (3) Note that L has ones on the diagonal, and that A and U have the same super-diagonal. By equating entries in (3) we find d1 = u1, ak = lkuk−1, dk = lkck−1 + uk, k = 2, 3,...,n. The Poisson matrix and Kronecker Products – p. 9/27 The Algorithm A = LU (LU-factorization) Ly = b (forward substitution) Ux = y (backward substituion) ak u1 = d1, lk = , uk = dk lkck−1, k = 2, 3,...,n. uk−1 − y1 = b1, yk = bk lkyk−1, k = 2, 3,...,n, − xn = yn/dn, xk =(yk ckxk+1)/uk, k = n 1,..., 2, 1. − − This process is well defined if A is strictly diagonally dominant. The number of arithmetic operations (flops) is O(n). The Poisson matrix and Kronecker Products – p. 10/27 LU of Block Tridiagonal Matrix D1 C1 1 U 1 C1 A2 D2 C2 L2 1 . .. .. .. .. .. = .. .. U m−1 Cm−1 Am−1 Dm−1 Cm−1 Lm 1 U m Am Dm −1 U 1 = D1, Lk = AkU − , U k = Dk LkCk−1, k = 2, 3,...,m. (4) k 1 − To solve the system Ax = b we partition b conformally with A in the form T T T b =[b1 ,..., bm]. The formulas for solving Ly = b and Ux = y are as follows: y = b1, y = bk Lky − , k = 2, 3,...,m, 1 k − k 1 −1 −1 (5) xm = U y , xk = U (y Ckxk+1), k = m 1,..., 2, 1. m m k k − − T T T The solution is then x =[x1 ,..., xm]. The Poisson matrix and Kronecker Products – p. 11/27 Poisson Problem The discrete Poisson problem can be solved writing it as a block tridiagonal matrix. We can also use Cholesky factorization of a band matrix. The matrix has bandwidth d = √n. Cholesky requires O(2nd2)= O(2n2) flops. The work using block tridiagonal solver is also O(n2). Need better methods (next time). The Poisson matrix and Kronecker Products – p. 12/27 Kronecker Product Definition 1. For any positive integers p,q,r,s we define the Kronecker product of two matrices A Rp,q and B Rr,s as a matrix C Rpr,qs given in block form as ∈ ∈ ∈ Ab1,1 Ab1,2 Ab1,s ··· Ab2,1 Ab2,2 Ab2,s ··· C = . . . . Abr,1 Abr,2 Abr,s ··· We denote the Kronecker product of A and B by C = A B. ⊗ Defined for rectangular matrices of any dimension # of rows(columns) = product of # of rows(columns) in A and B The Poisson matrix and Kronecker Products – p. 13/27 Kronecker Product Example 2 1 1 0 T = − , I = 1 2 0 1 − 2 1 0 0 − T 0 1 2 0 0 T I = = − ⊗ 0 T 0 0 2 1 − 0 0 1 2 − 2 0 1 0 − 2I I 0 2 0 1 I T = − = − ⊗ I 2I 1 0 2 0 − − 0 1 0 2 − The Poisson matrix and Kronecker Products – p. 14/27 Poisson Matrix = T I + I T ⊗ ⊗ T 2I I 0 − A = T + I 2I I = T I + I T ⊗ ⊗ − − T 0 I 2I − r,r s,s Definition 2. Let for positive integers r,s,k, A R , B R and Ik be the ∈ ∈ identity matrix of order k. The sum A Is + Ir B is known as the Kronecker sum of ⊗ ⊗ A and B. The Poisson matrix is the Kronecker sum of T with itself. The Poisson matrix and Kronecker Products – p. 15/27 Matrix equation Kronecker ↔ Given A Rr,r, B Rs,s, F Rr,s. Find V Rr,s such that ∈ ∈ ∈ ∈ AV BT = F For B Rm,n define ∈ b1 b1j b2 b2j mn vec(B) := R , bj = jth column . ∈ . . . bn bmj Lemma 1. AV BT = F (A B) vec(V ) = vec(F ) (6) ⇔ ⊗ T AV + V B = F (A Is + Ir B) vec(V ) = vec(F ). (7) ⇔ ⊗ ⊗ The Poisson matrix and Kronecker Products – p. 16/27 Proof T We partition V , F , and B by columns as V =(v1,..., vs), T F =(f 1,..., f s) and B =(b1,..., bs). Then we have (A B) vec(V ) = vec(F ) ⊗ Ab11 Ab1s v1 f1 ··· . . . = . ⇔ Abs1 Abss vs fs ··· A bij vj = fi, i = 1,...,m ⇔ X j T [AV b1,..., AV bs]= F AV B = F . ⇔ ⇔ This proves (6) The Poisson matrix and Kronecker Products – p. 17/27 Proof Continued (A Is + Ir B) vec(V ) = vec(F ) ⊗ ⊗ T T T (AV I + IrV B )= F AV + V B = F . ⇔ s ⇔ This gives a slick way to derive the Poisson matrix. Recall T AV + V B = F (A Is + Ir B) vec(V ) = vec(F ) ⇔ ⊗ ⊗ Therefore, TV + VT = h2F (T I + I T ) vec(V )= h2 vec(F ) ⇔ ⊗ ⊗ The Poisson matrix and Kronecker Products – p. 18/27 Mixed Product Rule (A B)(C D)=(AC) (BD) ⊗ ⊗ ⊗ Proof If B Rr,t and D Rt,s for some integers r, t then ∈ ∈ Ab1,1 Ab1,t Cd1,1 Cd1,s E1,1 E1,s ··· ··· ··· . . . = . , Abr,1 Abr,t Cdt,1 Cdt,s Er,1 Er,s ··· ··· ··· where for all i, j t Ei,j = bi,kdk,jAC =(AC)(BD)i,j = ((AC) (BD))i,j. X ⊗ k=1 where in the last formula i, j refers to the ij-block in the Kronecker product. The Poisson matrix and Kronecker Products – p. 19/27 Properties of Kronecker Products The usual arithmetic rules hold. Note however that (A B)T = AT BT ⊗ ⊗ − − (A B)−1 = A 1 B 1 if A and B are nonsingular ⊗ ⊗ A B = B A ⊗ 6 ⊗ (A B)(C D)=(AC) (BD) (mixed product rule) ⊗ ⊗ ⊗ The mixed product rule is valid for any matrices as long as the products AC and BD are defined.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us