Principle of Virtual Work

Principle of Virtual Work

Principle of Virtual Work Degrees of Freedom Associated with the concept of the lumped-mass approximation is the idea of the NUMBER OF DEGREES OF FREEDOM. This can be defined as “the number of independent co-ordinates required to specify the configuration of the system”. The word “independent” here implies that there is no fixed relationship between the co- ordinates, arising from geometric constraints. Modelling of Automotive Systems 1 Degrees of Freedom of Special Systems A particle in free motion in space has 3 degrees of freedom z particle in free motion in space r has 3 degrees of freedom y x 3 If we introduce one constraint – e.g. r is fixed then the number of degrees of freedom reduces to 2. note generally: no. of degrees of freedom = no. of co-ordinates –no. of equations of constraint Modelling of Automotive Systems 2 Rigid Body This has 6 degrees of freedom y 3 translation P2 P1 3 rotation P3 . x 3 e.g. for partials P1, P2 and P3 we have 3 x 3 = 9 co-ordinates but the distances between these particles are fixed – for a rigid body – thus there are 3 equations of constraint. The no. of degrees of freedom = no. of co-ordinates (9) - no. of equations of constraint (3) = 6. Modelling of Automotive Systems 3 Formulation of the Equations of Motion Two basic approaches: 1. application of Newton’s laws of motion to free-body diagrams Disadvantages of Newton’s law approach are that we need to deal with vector quantities – force and displacement. thus we need to resolve in two or three dimensions – choice of method of resolution needs to be made. Also need to introduce all internal forces on free-body diagrams – these usually disappear when the final equation of motion is found. 2. use of work with work based approach we deal with scalar quantities – e.g. work – we can develop a routine method – no need to take arbitrary decisions. Modelling of Automotive Systems 4 Free body diagram T θ mg Modelling of Automotive Systems 5 Principle of Virtual Work The work done by all the forces acting on a system, during a small virtual displacement is ZERO. Definition A virtual displacement is a small displacement of the system which is compatible with the geometric constraints. P P1 2 b a b P2 bδθ P1 aδθ a e.g. This is a one-degree of freedom system, only possible movement is a rotation. work done by P1 = P1(- aδθ) work done by P2 = P2(bδθ) Modelling of Automotive Systems 6 Total work done = P1(- aδθ) + P2(bδθ) = δW By principle of Virtual Work δW= 0 therefore: P1 (- aδθ) + P2(bδθ) = 0 - a P1 + b P2 = 0 P1a = P2b Modelling of Automotive Systems 7 D’Alembert’s Principle Consider a rigid mass, M, with force FA applied A = &x& FA (acceleration) M From Newton’s 2nd law of motion A F = Ma = M&x& or A F − M&x& = 0 Modelling of Automotive Systems 8 I Now, the term ( − M&x& ) can be regarded as a force – we call it an inertial force, and denote it F –thus we can then write: I F = −M&x& FA + FI = 0 In words – the sum of all forces acting on a body (including the inertial force) is zero – this is a statics principle. In fact all statics principles apply if we include inertial forces, including the Principle of Virtual Work. Modelling of Automotive Systems 9 Virtual Work and Displacements Using the concept of virtual displacements, and virtual work, we can derive the equations of motion of lumped parameter systems. Example 1 Mass/Spring System x k m Here number of degrees of freedom =1 Co-ordinate to describe the motion is x Now consider free-body diagram, at some time t Modelling of Automotive Systems 10 Total _ force : −m&x&− kx δW = ()− m&x&− kx δx = 0 Hence − m&x&− kx = 0 or m&x&+ kx = 0 R (reactive force) m inertial force − m&x& m restoring force kx mg (gravity force) General one degree of freedom system If q1 is the co-ordinate used to describe the movement then the general form of δW is as follows: δW = Q1δ q1 we call δq1 – generalised displacement Q1 – generalised force. From principle of virtual work δW = Q1δ q1 = 0 ∴Q1 = 0 Modelling of Automotive Systems 11 Example Referring to the mass/spring system again x= q1 k m x δW = (− mq&&1 − kq1 )δq1 = 0 ∴ Q1 = −mq&&1 − kq1 = 0 mq&&1 + kq1 = 0 Modelling of Automotive Systems 12 Example 2 Simple pendulum − mlθ&2 (inertial force –radial) 0 θ − mlθ&& (inertial force – tangential) P mg This is another one degree of freedom system. During a virtual displacement, δθ, the virtual work done is δW = (−ml&θ& − mgsin θ) lδθ = 0 δW = 0 (PVW) ∴ml&θ& + mg sin θ = 0 or g &θ& + sin θ = 0 l Modelling of Automotive Systems 13 Example 3 – two degrees of freedom system x1 x2 k k m m free-body diagrams. kx1 -mx 1 -mx2 m m k(x2-x1) Modelling of Automotive Systems 14 For LH mass: []− kx1 − m&x&1 + k()x2 − x1 δx1 = δW1 []− k()x2 − x1 − m&x&2 δx2 = δW2 δW = δW1 + δW2 = ()Q1 δx1 + ()Q2 δx2 For δW = 0 for all δx1,δx2 the Qi quantities must be zero. Hence: m&x&1 + kx1 − k(x2 − x1 ) = 0 m&x&2 + k(x2 − x1 ) = 0 or m 0 &x&1 k − kx1 0 + = 0 m&x&2 − k k x2 0 Modelling of Automotive Systems 15 n degree of freedom systems Having discussed single and two degree of freedom systems, and introduced the concept of generalised forces we can now consider the general case of an n degree of freedom system. A virtual displacement must be consistent with the constraints on the system. The motion can be described by n independent, generalised co-ordinates, q1,q2 ,....,qn . Hence a virtual displacement can be represented by small changes in these co-ordinates:- δ q1,δ q2 ,...,δ qn Suppose only one co-ordinate, qi (1 ≤ i ≤ n) is given a small, imaginary displacement, δ qi. As a result every particle in the system will be, in general, displaced a certain amount. The virtual work done will be of the form δW = Qiδ qi where Qi is an expression relating directly to the forces acting on the system. Qi is the generalised force associated with qi . Modelling of Automotive Systems 16 From the principle of virtual work δW = Qiδ qi = 0 Since, δ qi is finite, we get Qi = 0 This must be true for i = 1,2,...,n. Q1 = 0 Q = 0 I.e. 2 these are the equations M of motion of the system Qn = 0 Modelling of Automotive Systems 17 The generalised forces have component parts 1) inertial forces (mass x acceleration) 2) elastic or restraining forces 3) damping forces (energy dissipation) 4) external forces 5) constraint forces I E D A δW=Qiδqi =δW +δW +δW +δW inertial elastic damping external I E D A = ()Qi + Qi + Qi + Qi δ qi (Noting, as before, that the constraint forces do no virtual work) Then the equations of motion are: I E D A Qi + Qi + Qi + Qi = 0 i =1,2,...,n These are the n equations of motion. We will examine each of these components now, in more detail. The aim is to relate these component forces to the generalised co-ordinates q1,q2 ,....,qn. Modelling of Automotive Systems 18 Inertial Forces (See also Handout) The position of the ith particle of mass, in the system, is, in general, related to the n generalised co-ordinates, and time (if the constraints are independent of time) then the position of the ith particle depends only on the n generalised co- ordinates. Thus r r ri =ri ()q1,q2,...,qn,t (1) Now we suppose that the system is in motion and that we represent the inertial force on the ith particle (using D’Alembert’s Principle) as r − mi&r&i (2) We now give the system an arbitrary virtual displacement – this can be represented in terms of generalised co-ordinates by δq1,δq2 ,...,δqn . The virtual displacement of the Ithparticle can be represented by r δr (3) and the virtual work done by the inertia force on the Ith particle is simply r r (−mi &r&i ). δri (4) (note that this is a scalar product). From this result we get the total virtual work as I r r δW = ∑(−mi&r&i ). δri (5) i Modelling of Automotive Systems 19 Using equation (1) we have n r r ∂ri δri = ⋅ δq j ∑ (6) i=1 ∂q j Hence n ∂rr δW I = (−m &r&) ⋅ i ⋅ δq ∑ i i ∑ j (7) i j =1 ∂q j and re-arranging n ∂r I &r& i δW = ∑δq j ∑()− miri ⋅ (8) j =1 i ∂rj However, the generalised inertial forces, Qj, are effectively defined by n I r I δW = ∑(−mi&r&i ) ⋅ ∑Q jδq j (9) i j =1 Comparing (8) and (9) we have r I r ∂ri Q j = ∑(−mi&r&i ) ⋅ (10) i ∂q j It is shown in the handout notes that I ∂ ∂T ∂T Q j = − ( )+ (11) ∂t ∂q& j ∂q j Modelling of Automotive Systems 20 where T is the total KE 1 r r T = ∑ m i r&i ⋅ r&i (12) i 2 Elastic Forces Consider a simple spring: ←FS • FE x For static equilibrium FE = FS (external force) = (internal spring force) Modelling of Automotive Systems 21 Suppose we define the POTENTIAL ENERGY, V, as the work done by the external force to extend the spring a distance χ FE κχ extension of χ spring 1 2 external work done = kx = V 2 ∴ V= f(x)=V(x)− a function of x 1 2 Here V = kx 2 The work done by the internal spring force, W, is equal and opposite to V 1 W = −V = − kx2 2 Modelling of Automotive Systems 22 Now consider a small, virtual displacement, δx .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us