List of Temporal Logic Laws

List of Temporal Logic Laws

List of Temporal Logic Laws We give here a compact list of laws of the various temporal logics, particularly in- cluding those which are frequently used throughout the book. Furthermore, we note some of the corresponding formal systems. Laws of Basic LTL e e (T1) ¬ A ↔ ¬A (T2) ¬2A ↔ 3¬A (T3) ¬3A ↔ 2¬A (T4) 2A → A (T5) A → 3A e (T6) 2A → A e (T7) A → 3A (T8) 2A → 3A (T9) 32A → 23A (T10) 22A ↔ 2A (T11) 33A ↔ 3A e e (T12) 2 A ↔ 2A e e (T13) 3 A ↔ 3A e e e (T14) (A → B) ↔ A → B e e e (T15) (A ∧ B) ↔ A ∧ B e e e (T16) (A ∨ B) ↔ A ∨ B e e e (T17) (A ↔ B) ↔ ( A ↔ B) (T18) 2(A ∧ B) ↔ 2A ∧ 2B (T19) 3(A ∨ B) ↔ 3A ∨ 3B (T20) 23(A ∨ B) ↔ 23A ∨ 23B (T21) 32(A ∧ B) ↔ 32A ∧ 32B (T22) 2(A → B) → (2A → 2B) (T23) 2A ∨ 2B → 2(A ∨ B) (T24) (3A → 3B) → 3(A → B) 414 List of Temporal Logic Laws (T25) 3(A ∧ B) → 3A ∧ 3B (T26) 23(A ∧ B) → 23A ∧ 23B (T27) 32A ∨ 32B → 32(A ∨ B) e (T28) 2A ↔ A ∧ 2A e (T29) 3A ↔ A ∨ 3A e e (T30) 2(A → B) → ( A → B) (T31) 2(A → B) → (3A → 3B) e e (T32) 2A → ( B → (A ∧ B)) (T33) 2A → (2B → 2(A ∧ B)) (T34) 2A → (3B → 3(A ∧ B)) (T35) 2(2A → B) → (2A → 2B) (T36) 2(A → 3B) → (3A → 3B) (T37) 323A ↔ 23A (T38) 232A ↔ 32A Laws for Binary Operators in LTL e (Tb1) A until B ↔ 3B ∧ A unless B e (Tb2) A unless B ↔ (A unl B) (Tb3) A unl B ↔ A unt B ∨ 2A (Tb4) A unt B ↔ B ∨ (A ∧ A until B) (Tb5) A unless B ↔ B atnext (A → B) (Tb6) A atnext B ↔ B before (¬A ∧ B) (Tb7) A before B ↔¬(A ∨ B) unless (A ∧¬B) e (Tb8) A ↔ A atnext true (Tb9) 2A ↔ A ∧ A unless false (Tb10) 2A ↔ A unl false e e (Tb11) A until B ↔ B ∨ (A ∧ A until B) e e (Tb12) A unless B ↔ B ∨ (A ∧ A unless B) e (Tb13) A unt B ↔ B ∨ (A ∧ (A unt B)) e (Tb14) A unl B ↔ B ∨ (A ∧ (A unl B)) e e (Tb15) A atnext B ↔ (B → A) ∧ (¬B → A atnext B) e e (Tb16) A before B ↔ ¬B ∧ (A ∨ A before B) e e (Tb17) ¬(A unless B) ↔ ¬B ∧ (¬A ∨¬(A unless B)) (Tb18) 2(¬B → A) → A unl B e e e (Tb19) (A unl B) ↔ A unl B (Tb20) (A ∧ B) unl C ↔ A unl C ∧ B unl C (Tb21) A unl (B ∨ C ) ↔ A unl B ∨ A unl C (Tb22) A unl (B ∧ C ) → A unl B ∧ A unl C (Tb23) A unl (A unl B) ↔ A unl B (Tb24) (A unl B) unl B ↔ A unl B (Tb25) 2(B → A) → A atnext B e e e (Tb26) (A atnext B) ↔ A atnext B (Tb27) (A ∧ B) atnext C ↔ A atnext C ∧ B atnext C (Tb28) (A ∨ B) atnext C ↔ A atnext C ∨ B atnext C List of Temporal Logic Laws 415 (Tb29) A atnext (B ∨ C ) → A atnext B ∨ A atnext C Laws for Fixpoint Operators in LTL e (Tμ1) 2A ↔ νu(A ∧ u) e (Tμ2) 3A ↔ μu(A ∨ u) e e (Tμ3) A until B ↔ μu( B ∨ (A ∧ u)) e e (Tμ4) A unless B ↔ νu( B ∨ (A ∧ u)) e (Tμ5) A unt B ↔ μu(B ∨ (A ∧ u)) e (Tμ6) A unl B ↔ νu(B ∨ (A ∧ u)) e e (Tμ7) A atnext B ↔ νu( (B → A) ∧ (¬B → u)) e e (Tμ8) A before B ↔ νu( ¬B ∧ (A ∨ u)) Laws for Propositional Quantification in LTL (Tq1) ∀uA → A (B) e ue (Tq2) ∀u A ↔ ∀uA (Tq3) ∀u2A ↔ 2∀uA (Tq4) ∃u3A ↔ 3∃uA (Tq5) 2(A ∨ B) →∃u2((A ∧ u) ∨ (B ∧¬u)) Laws for Past Operators in LTL e e (Tp1) A →¬ false e e (Tp2) ¬A →¬ A e e (Tp3) ¬ A ↔ ¬A ee (Tp4) A → A ee (Tp5) A → A e e e (Tp6) (A → B) ↔ A → B e e e (Tp7) (A ∧ B) ↔ A ∧ B e e e (Tp8) (A ∧ B) ↔ A ∧ B Laws of First-Order LTL e e (T39) ∃x A ↔ ∃xA e e (T40) ∀x A ↔ ∀xA (T41) ∃x3A ↔ 3∃xA (T42) ∀x2A ↔ 2∀xA (Tb30) ∃x(A unl B) ↔ A unl (∃xB) if there is no free occurrence of x in A (Tb31) ∀x(A unl B) ↔ (∀xA) unl B if there is no free occurrence of x in B (Tb32) ∃x(A atnext B) ↔ (∃xA) atnext B if there is no free occurrence of x in B (Tb33) ∀x(A atnext B) ↔ (∀xA) atnext B if there is no free occurrence of x in B 416 List of Temporal Logic Laws Derivation Rules of Linear Temporal Logic e (nex) A A (alw) A 2A e (ind) A → B, A → A A → 2B e (ind1) A → A A → 2A e (ind2) A → B, B → B A → 2B e (som) A → B A → 3B (chain) A → 3B, B → 3C A → 3C e e (indunless) A → C ∨ (A ∧ B) A → B unless C e (indunl) A → C ∨ (B ∧ A) A → B unl C e e (indatnext) A → (C → B) ∧ (¬C → A) A → B atnext C e e (indbefore) A → ¬C ∧ (A ∨ B) A → B before C (μ-ind) Au (B) → B μuA → B if there is no free occurrence of u in B →∃ e ↔ ∧ (qltl-ind) F u2 ((u2 u1) Fu1 (u2)) →∃ ↔ ∧ 2 F u2((u2 u1) Fu1 (u2)) if every occurrence of variables ui in F is in the scope of e 1 at most one operator and no other temporal operator e (indpast) A → B, A → A A → 2B e (indinit) init → A, A → A A (wfr) A → 3(B ∨∃y¯(¯y ≺ y ∧ Ay (¯y))) ∃yA → 3B if B does not contain y, for y, y¯ ∈XWF Laws of Generalized TLA (GT1) 2 [A] → A e e e (GT2) 2A → 2[ A]e 2 ↔ 2 (GT3) [A]e e [A]e 2 2 → (GT4) [A]e1 [A]e1 e2 2 → 2 (GT5) [A]e1 [A]e1 e2 2 ↔ 2 (GT6) [A]e1 [A]e2 e2 e1 Laws of Interval Temporal Logic (IT1) empty chop A ↔ A e` e` (IT2) A chop B ↔ (A chop B) (IT3) (A ∨ B) chop C ↔ A chop C ∨ B chop C (IT4) A chop (B ∨ C ) ↔ A chop B ∨ A chop C (IT5) A chop (B chop C ) ↔ (A chop B) chop C List of Temporal Logic Laws 417 Laws of BTL and CTL e (BT1) E2A ↔ A ∧ E E2A e (BT2) E3A ↔ A ∨ E E3A e (BT3) A2A ↔ A ∧ A A2A e (BT4) A3A ↔ A ∨ A A3A e e (BT5) A A → E A e (BT6) E2A → E A (BT7) E2E2A ↔ E2A e e (BT8) E E2A → E2E A e e e (BT9) E (A ∧ B) → E A ∧ E B e e e (BT10) E (A → B) ↔ A A → E B (BT11) E3(A ∨ B) ↔ E3A ∨ E3B (BT12) E2(A ∧ B) → E2A ∧ E2B e (CT1) A Eunt B ↔ B ∨ (A ∧ E (A Eunt B)) (CT2) A Eunt B → E3B e e e (CT3) E (A Eunt B) ↔ E A Eunt E B (CT4) A Eunt C ∨ B Eunt C → (A ∨ B) Eunt C (CT5) (A ∧ B) Eunt C → A Eunt C ∧ B Eunt C (CT6) A Eunt (B ∨ C ) ↔ A Eunt B ∨ A Eunt C (CT7) A Eunt (B ∧ C ) → A Eunt B ∧ A Eunt C Derivation Rules of Branching Time Temporal Logic e e (nexb) A → B E A → E B e (indb1) A → B, A → E A A → E2B e (indb2) A →¬B, A → A (A ∨¬E3B) A →¬E3B e (indc) A →¬C , A → A (A ∨¬(B Eunt C )) A →¬(B Eunt C ) The Formal System ΣLTL (taut) All tautologically valid formulas e e (ltl1) ¬ A ↔ ¬A e e e (ltl2) (A → B) → ( A → B) e (ltl3) 2A → A ∧ 2A (mp) A, A → B B e (nex) A A e (ind) A → B, A → A A → 2B Additional Axioms and Rules for Extensions of LTL e e (until1) A until B ↔ B ∨ (A ∧ A until B) e (until2) A until B → 3B e e (unless1) A unless B ↔ B ∨ (A ∧ A unless B) 418 List of Temporal Logic Laws e (unless2) 2A → A unless B e e (atnext1) A atnext B ↔ (B → A) ∧ (¬B → A atnext B) e (atnext2) 2¬B → A atnext B e e (before1) A before B ↔ ¬B ∧ (A ∨ A before B) e (before2) 2¬B → A before B (μ-rec) Au (μuA) → μuA (μ-ind) Au (B) → B μuA → B if there is no free occurrence of u in B (qltl1) A (B) →∃uA u e e (qltl2) ∃u A ↔ ∃uA e (qltl3) ∃u(u ∧ 2¬u) (qltl-part) A → B ∃uA → B if there is no free occurrence of u in B →∃ e ↔ ∧ (qltl-ind) F u2 ((u2 u1) Fu1 (u2)) →∃ ↔ ∧ 2 F u2((u2 u1) Fu1 (u2)) if every occurrence of variables ui in F is in the scope of at e 1 most one operator and no other temporal operator e e (pltl1) ¬A →¬ A e e e (pltl2) (A → B) → ( A → B) e (pltl3) 2A → A ∧ 2A e (pltl4) 3− false ee (pltl5) A → A ee (pltl6) A → A e (prev) A A e (indpast) A → B, A → A A → 2B e (iltl) ¬init (init) init → 2A A e e (since) A since B ↔ B ∨ (A ∧ A since B) e e (backto) A backto B ↔ B ∨ (A ∧ A backto B) e e (atlast) A atlast B ↔ (B → A) ∧ (¬B → A atlast B) e e (after) A after B ↔ ¬B ∧ (A ∨ A after B) The Formal System ΣFOLTL (taut) All tautologically valid formulas e e (ltl1) ¬ A ↔ ¬A e e e (ltl2) (A → B) → ( A → B) e (ltl3) 2A → A ∧ 2A (ltl4) A (t) →∃xA if t is substitutable for x in A ex e (ltl5) ∃xA →∃x A e (ltl6) A → A if A is rigid (eq1) x = x (eq2) x = y → (A → Ax (y)) if A is non-temporal (mp) A, A → B B List of Temporal Logic Laws 419 e (nex) A A e (ind) A → B, A → A A → 2B (par) A → B ∃xA → B if there is no free occurrence of x in B The Formal System ΣpGTLA (taut) All tautologically valid formulas (tautpf ) 2[A]e if A is a tautologically valid pre-formula (gtla1) 2A → A (gtla2) 2A → 2[A] ee (gtla3) 2A → 2[ 2A]e (gtla4) 2[A → B]e → (2[A]e → 2[B]e ) (gtla5) 2[e = e] e e e (gtla6) 2[¬ A ↔ ¬A] e e e e (gtla7) 2[ (A → B) → ( A → B)]e 2 2 → (gtla8) [A]e1 [A]e1 e2 2 → 2 e2 (gtla9) [A]e1 [A]e1 e2 2 ∧ e2 → 2 (gtla10) [A]e1 [A]e1 [A]e1 e2 2 e2 → 2 e (gtla11) A [ A]e1 e2 (mp) A, A → B B (alw) A 2A e (indpf ) A → B, 2[A → A]U(A) A → 2B The Formal System ΣBTL (taut) All tautologically valid formulas e (btl1) E true e e e (btl2) E (A ∨ B) ↔ E A ∨ E B e (btl3) E2A ↔ A ∧ E E2A e (btl4) E3A ↔ A ∨ E E3A (mp) A, A → B B e e (nexb) A → B E A → E B e (indb1) A → B, A → E A A → E2B e (indb2) A →¬B, A → A (A ∨¬E3B) A →¬E3B The Formal System ΣCTL (taut) All tautologically valid formulas e (btl1) E true e e e (btl2) E (A ∨ B) ↔ E A ∨ E B e (btl3) E2A ↔ A ∧ E E2A e (ctl) A Eunt B ↔ B ∨ (A ∧ E (A Eunt B)) (mp) A, A → B B 420 List of Temporal Logic Laws e e (nexb) A → B E A → E B e (indb1) A → B, A → E A A → E2B e (indc) A →¬C , A → A (A ∨¬(B Eunt C )) A →¬(B Eunt C ) References 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us