Chadron M.Friesen B.Ameduri Outstanding Telechelic Perfluoropolyalkylethers and Applications Therefrom Chadron Mark Friesen1* and Bruno Ameduri2* 1Department of Chemistry, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada; 2Ingénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, Ecole Nationale Supérieure de Chimie de Montpellier (UMR5253-CNRS), 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France. Table of Contents Abbreviations ............................................................................................................................. 4 1. Introduction ............................................................................................................................ 6 2. Synthesis of Telechelic Perfluoropolyalkylethers (PFPAEs) diacylfluorides .......................... 9 2.1 Direct Fluorination of Alkyl Ethers .................................................................................... 9 2.2 Anionic Ring-Opening Polymerization of Fluorinated Epoxides and Oxetanes ............. 11 2.3 Radical Photo-oxidation of Perfluoroalkenes ................................................................. 12 3. Commercially Available Telechelic PFPAEs .......................................................................... 15 4. Characterization and Properties of PFPAEs ......................................................................... 16 4.1 Nuclear Magnetic Resonance (NMR) Spectroscopy ....................................................... 17 4.2 Mass Spectrometry ......................................................................................................... 21 4.3 Chemical , Physical and Thermal Properties .................................................................. 22 4.3.1 Chemical Properties ................................................................................................. 22 4.3.2 Thermal Properties .................................................................................................. 23 4.3.3 Conclusion ................................................................................................................ 25 4.4 Rheology ......................................................................................................................... 25 4.5 Lubricity .......................................................................................................................... 31 4.6 Chromatography ............................................................................................................. 33 4.7 PFPAEs: Health and the Environment ........................................................................... 33 4.8 Conclusion....................................................................................................................... 35 5. Intermediate Telechelic PFPAEs for Materials .................................................................... 35 6. Materials based on Telechelic PFPAEs ................................................................................. 38 6.1 Formation of Fluoroelastomers ...................................................................................... 38 1 6.1.1 Polycondensation reactions (polyurethanes, polyesters, polyamides, and polycarbonates) to form multiblock copolymers ............................................................. 38 6.1.2 Reactive Macromonomers for radical or photo-polymerization [telechelic bis(meth)acrylates and bisstyrenes] ................................................................................. 42 6.2 Triblock or Multiblock Copolymer Materials .................................................................. 49 6.2.1 PEO-b-PFPE-b-PEO Triblock Copolymers ................................................................ 49 6.2.2 Synthesis of PFPE-b-PEO-b-PFPE triblock Copolymers ............................................ 54 6.2.3 Synthesis of Poly(M)-b-PFPAE-b-Poly(M) triblock Copolymers from Telechelic PFPEs ........................................................................................................................................... 55 6.3. Synthesis of cross-linked materials based on PFPAEs ................................................... 57 6.3.1 Photocrosslinked telechelic bis(meth)acrylates for interpenetrated polymer networks (IPNs) ................................................................................................................. 57 6.3.2 Alkyne-Azide “click” Chemistry with Trifunctional Derivatives ............................... 60 6.3.3 Polyhydrosilylation of Telechelic PFPAE dienes with Telechelic Bis(silane) ............ 62 7. Applications of Telechelic PFPAEs ....................................................................................... 63 7.1 Self-Assembly Materials ................................................................................................. 63 7.2 Aerospace Materials ....................................................................................................... 71 7.3. Microfluidic Devices....................................................................................................... 75 7.4 Low Surface Tension, Anti-Fouling, and De-icing Coatings ............................................ 80 7.5 Optically and Antireflective Transparent Films .............................................................. 86 7.6 Self-Healing Materials ..................................................................................................... 88 7.7 Thermoplastic Elastomers .............................................................................................. 91 7.8 Materials for Energy ....................................................................................................... 93 7.9 Resistant Photoresists for Lithographic Materials ......................................................... 97 7.10 Theranostics ................................................................................................................ 101 8. Conclusions and Perspectives ............................................................................................ 103 Acknowledgements ................................................................................................................ 104 References .............................................................................................................................. 104 2 Outstanding Telechelic Perfluoropolyalkylethers and Applications Therefrom Chadron Mark Friesen1* and Bruno Ameduri2* 1Department of Chemistry, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada; 2Ingénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, Ecole Nationale Supérieure de Chimie de Montpellier (UMR5253-CNRS), 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France. Abstract An overview on the synthesis and applications of telechelic perfluoropolyalkylethers (PFPAEs) is presented. First, a non-exhaustive summary on the synthesis and properties of commercially available PFPAEs is supplied, followed by conventional strategies for the preparation of telechelic PFPAEs ranging from direct fluorination, anionic ring-opening polymerization of oxetane and hexafluoropropylene oxide, to photochemical radical polymerization of tetrafluoroethylene, hexafluoropropene, or perfluoromethyl vinyl ether in the presence of oxygen. Properties (chemical, physical, and thermal) and characterizations (NMR, MALDI, rheology, lubricity, and toxicity) of these PFPAEs will also be presented. Telechelic PFPFA bis(acylfluorides) are interesting precursors for a wide range of molecules and copolymers such as: polycondensates (polyesters, polyurethanes, polycarbonates, polyethers), macromonomers that can further be cross-linked, triblock copolymers, and (semi) interpenetrated polymer networks. Furthermore, important applications of these modified PFPAEs will be exhibited. These applications range from self-assembly materials (e.g. amphiphilic and anti-bacterial derivatives, and hydrogels), aerospace materials, microfluidic devices, protective coatings (e.g. low surface tension , anti-fouling, and de-icing), optically transparent films, self-healing materials, thermoplastic elastomers, materials for energy (e.g. zinc-air and lithium ion batteries, polymeric electrolyte membranes for fuel cells), resistant photoresists for lithographic materials, to theranostics (e.g. intracellular pH measurements and in vivo cell tracking technologies using Magnetic Resonance Imaging). This overview summarizes these emerging fields, emphasizing structural variety, end group functionalities, post-polymerization modifications, and applications previously unobtainable without accessible to these new materials. 3 Keywords: advanced materials, anionic ring-opening polymerization, fluoropolymers, perfluoropolyalkylethers, radical photo-oxidation, telechelics, thermal properties, well- defined materials Abbreviations AFM atomic force microscopy ARF adhesion-reduction-factor AIBN azobisisobutyronitrile Bar barometric pressure BDO 1,4-butandiol BME benzoin methyl ether BPO benzoyl peroxide BVE bisvinylether CMC critical micelle concentration COSY homonuclear correlation spectroscopy cSt centistokes DBTDL dibutyltin dilaurate DC dendritic cells DCTB trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile DMA dimethacrylate and dynamic mechanical analysis DMT dimethyl terephthalate DMI dimethyl isophthalate DPn degree of polymerization in number DOSY
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages113 Page
-
File Size-