Lemniscate Envelope.Doc Using Geometer’S Sketchpad to Support Mathematical Thinking

Lemniscate Envelope.Doc Using Geometer’S Sketchpad to Support Mathematical Thinking

Using Geometer’s Sketchpad to Support Mathematical Thinking Envelope of a Lemniscate The lemniscate, also called the lemniscate of Bernoulli, is a polar curve whose most common form is the locus of points P , such that the product of the distances from to two fixed points and is the constant 2. The fixed P F 1 F 2 c points, or foci, are a distance 2 c apart. Expressed in terms of distances:€ € € € 2 € (Equation 1) PF ⋅ PF = c € 1 2 Using the coordinates P x,y , F c,0 and F −c,0 in Equation 1 yields the ( ) 1( ) 2 ( ) Cartesian equation: € 2 2 2 2 x − c + y − 0 ⋅ x + c + y − 0 = c2 ( ) ( ) ( ) ( ) € € € Now squaring both sides yields: 2 2 2 2 4 (Equation€ 2) (x − c) + y (x + c) + y = c [ ][ ] Expanding and simplifying then gives: 2 2 2 2 x − c x + c + x − c y2 + x + c y2 + y4 = c4 € ( ) ( ) ( ) ( ) 2 2 (x − c) (x + c) + x2 − 2xc + c2 y2 + x2 + 2xc + c2 y2 + y4 = c4 ( ) ( ) 2 2 (x − c) (x + c) + 2x2 y2 + 2c2 y2 + y4 = c4 € € Shelly Berman p. 1 of 3 Jo Ann Fricker € Lemniscate Envelope.doc Using Geometer’s Sketchpad to Support Mathematical Thinking x2 − 2xc + c2 x2 + 2xc + c2 + 2x2 y2 + 2c2 y2 + y4 = c4 ( )( ) 4 2 2 2 2 2 2 4 x − 2x c + 2x y + 2c y + y = 0 4 2 2 4 2 2 2 2 x + 2x y + y = 2x c − 2c y € 2 2 2 2 2 2 (Equation 3) x + y = 2c x − y . € ( ) ( ) € Translating to polar coordinates gives the equation: € 2 r 2 cos2 θ + r 2 sin2 θ = 2c2 r 2 cos2 θ − r 2 sin2 θ ( ) ( ) 2 r 4 cos2 θ + sin2 θ = 2c2r 2 cos2 θ − sin2 θ ( ) ( ) 4 2 2 € r = 2c r (cos 2θ) 2 2 (Equation€ 4) r = 2c cos(2θ) usually simplified to: € 2 2 (Equation 5) r = a cos(2θ). Adapted from Eric W. Weisstein.€ "Lemniscate." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Lemniscate.html € π Rotating the polar curve through an angle of would result in the curve: 4 2 2 π r = a cos 2 θ − . 4 Geometrically, the lemniscate can be€ generated as the envelope of circles centered on a rectangular hyperbola and passing through the center of the hyperbola (Wells 1991).€ The lemniscate pictured in the diagram is modeled by the equation: π r 2 = 80 cos 2θ − 2 € Shelly Berman p. 2 of 3 Jo Ann Fricker Lemniscate Envelope.doc Using Geometer’s Sketchpad to Support Mathematical Thinking Adapted from Exploring Precalculus with The Geometer’s Sketchpad 4.0 http://www.keypress.com/catalog/products/software/Prod_GSPModExpPrecalc.html Hide Cartesian Family of Lemniscates Hide Polar Hide Cartesian Family of Lemniscates Hide Polar 105° 90° 75° 105° 90° 75° + 120° 60° + 120° 60° 5 5 135° + 45° 135° + 45° 4 4 3 150° 30° 3 150° 30° 2 2 165° 15° 165° 15° 1 1 180° 0° 180° 0° -90° 90° 180° 270° 360° 450° -90° 90° 180° 270° 360° 450° -1 -1 -2 195° 345° -2 195° 345° -3 -3 210° 330° 210° 330° -4 -4 -5 225° - 315° -5 225° - 315° - 240° 300° - 240° 300° 255° 270° 285° 255° 270° 285° θ = 60° θ = 60° Edit the function below to try your own. Edit the function below to try your own. You can use parameters a and b in the You can use parameters a and b in the -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. 0° 45° 360° 0° 45° 360° a = 4.00 a = 4.00 2 2 Animate f(θ) = a ⋅cos(2⋅θ-n⋅90) Animate f(θ) = a ⋅sin(2⋅θ-n⋅90) Exploring Precalculus with Sketchpad n = 0.00 Exploring Precalculus with Sketchpad n = 0.00 (C) 2005 by Key Curriculum Press (C) 2005 by Key Curriculum Press Hide Cartesian Family of Lemniscates Hide Polar Hide Cartesian Family of Lemniscates Hide Polar 105° 90° 75° 105° 90° 75° + 120° 60° + 120° 60° 5 5 135° + 45° 135° + 45° 4 4 3 150° 30° 3 150° 30° 2 2 165° 15° 165° 15° 1 1 180° 0° 180° 0° -90° 90° 180° 270° 360° 450° -90° 90° 180° 270° 360° 450° -1 -1 -2 195° 345° -2 195° 345° -3 -3 210° 330° 210° 330° -4 -4 -5 225° - 315° -5 225° - 315° - 240° 300° - 240° 300° 255° 270° 285° 255° 270° 285° θ = 60° θ = 60° Edit the function below to try your own. Edit the function below to try your own. You can use parameters a and b in the You can use parameters a and b in the -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. 0° 45° 360° 0° 45° 360° a = 4.00 a = 4.00 2 2 Animate f(θ) = a ⋅cos(2⋅θ-n⋅90) Animate f(θ) = a ⋅sin(2⋅θ-n⋅90) Exploring Precalculus with Sketchpad n = 1.00 Exploring Precalculus with Sketchpad n = 1.00 (C) 2005 by Key Curriculum Press (C) 2005 by Key Curriculum Press Hide Cartesian Family of Lemniscates Hide Polar Hide Cartesian Family of Lemniscates Hide Polar 105° 90° 75° 105° 90° 75° + 120° 60° + 120° 60° 5 5 135° + 45° 135° + 45° 4 4 3 150° 30° 3 150° 30° 2 2 165° 15° 165° 15° 1 1 180° 0° 180° 0° -90° 90° 180° 270° 360° 450° -90° 90° 180° 270° 360° 450° -1 -1 -2 195° 345° -2 195° 345° -3 -3 210° 330° 210° 330° -4 -4 -5 225° - 315° -5 225° - 315° - 240° 300° - 240° 300° 255° 270° 285° 255° 270° 285° θ = 60° θ = 60° Edit the function below to try your own. Edit the function below to try your own. You can use parameters a and b in the You can use parameters a and b in the -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. -180° -90° 30° 60°90° 180° 270° 450° 540° function you create. 0° 45° 360° 0° 45° 360° a = 4.00 a = 4.00 2 2 Animate f(θ) = a ⋅cos(2⋅θ-n⋅90) Animate f(θ) = a ⋅sin(2⋅θ-n⋅90) Exploring Precalculus with Sketchpad n = 2.00 Exploring Precalculus with Sketchpad n = 2.00 (C) 2005 by Key Curriculum Press (C) 2005 by Key Curriculum Press Shelly Berman p. 3 of 3 Jo Ann Fricker Lemniscate Envelope.doc .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us