Lecture 16 Slides

Lecture 16 Slides

THE SHELL MODEL 22.02 Introduction To Applied Nuclear Physics Spring 2012 1 Atomic Shell Model • Chemical properties show a periodicity • Periodic table of the elements • Add electrons into shell structure 2 Atomic Radius 0.30 Ê Ê Ê 0.25 Ê Ê Ê ÊÊ ÊÊÊ Ê Êʇ Ê Ê Ê Ê Ê ÊÊ D 0.20 Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê nm Ê @ Ê Ê Ê Ê Ê Ê Ê Ê‡ Ê Ê Ê Ê Ê‡ Ê Ê ÊÊ 0.15 ÊÊ Ê Êʇ Ê Ê Ê Ê Ê Radius Ê Ê Ê Ê Ê‡ Ê Ê Ê Ê Ê‡ Ê 0.10 Ê Ê Ê Ê Ê‡ Ê Ê‡ Ê Ê Ê 0.05 Ê Ê Ê‡ ʇ 0 20 40 60 80 Z 3 Ionization Energy ʇ Ionization Energy (similar to B per nucleon) ʇ 2000 ʇ 1500 ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ kJ per Mole ʇ ʇ 1000 ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ ʇ20 ʇ 40 60 80 100 ʇ ʇ Z 4 ATOMIC STRUCTURE The atomic wavefunction is written as = n, l, m = R (r)Y m(#,' ) | i | i n,l l where the labels indicate : n : principal quantum number l : orbital (or azimuthal) quantum number m: magnetic quantum number The degeneracy is (l) = 2(2l + 1) (n)=2n2 D ! D 5 AUFBAU PRINCIPLE The orbitals (or shells) are then given by the n-levels (?) l 0 1 2 3 4 5 6 Spectroscopic s p d f g h i notation (l) 2 6 10 14 18 22 26 D historic structure heavy nuclei n (n) e− in shell D 1 2 2 2 6 8 3 18 28 6 ATOMIC PERIODIC TABLE 7 AUFBAU PRINCIPLE The orbitals (or shells) are then given by close-by energy-levels l 0 1 2 3 4 5 6 Spectroscopic s p d f g h i notation (l) 2 6 10 14 18 22 26 D historic structure heavy nuclei n (n) e− in shell D 1 2 2 3s+3p form one level with # 10 2 6 8 4s is filled before 3d 3 18 28 8 Nuclear Shell Model • Picture of adding particles to an external potential is no longer good: each nucleon contributes to the potential • Still many evidences of a shell structure 9 Separation Energy -5 4 28 50 82 126 3 20 208Pb 2 8 64 184 Ni 114 W 1 Ca 5 0 4 38 Ar 102Mo 3 -1 86 (MeV) (MeV) Kr 2 Pb 2n 2p -2 Pt S S 1 Dy -3 132 Hf Te Ce 14C 0 -4 U -1 Kr -5 Cd 28 -2 Ca 50 82 126 20 -3 Ni 8 -4 5 -5 O 0 50 100 150 0 25 50 75 100 125 150 Nucleon number Nucleon number PROTON NEUTRON Image by MIT OpenCourseWare. After Krane. 10 B/A: JUMPS 9 8 7 6 B/A 5 4 3 (Mass number) (binding energy per nucleon) A 0 50 100 150 200 250 “Jumps” in Binding energy from experimental data 11 CHART of NUCLIDES (Z/A vs. A) Z/A 0.55 0.50 0.45 0.40 0.35 A 50 100 150 200 250 12 CHART OF NUCLIDES http://www.nndc.bnl.gov/chart/ “Periodic”, more complex properties → nuclear structure © Brookhaven National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 13 NUCLEAR POTENTIAL 2 V 2 V0 (Z 1)e 2 0 V = r − Vn = r (V0) p R2 − 2R3 R2 − ✓ 0 0 ◆ ✓ 0 ◆ 3 (Z 1)e2 V − − 0 − 2 R ✓ 0 ◆ Harmonic potential Steeper for neutrons 14 NUCLEAR POTENTIAL 2 V0 (Z 1)e 2 V0 V = r2 − Vn = r (V0) p R2 − 2R3 R2 − ✓ 0 0 ◆ ✓ 0 ◆ 3 (Z 1)e2 V − − 0 − 2 R ✓ 0 ◆ Steeper and Deeper for neutrons Harmonic potential + well depth 15 Shell Mode Harmonic oscillator: solve (part of) the radial equation including the angular momentum (centrifugal force term) we obtain the usual principal quantum number n = (N-l)/2+1 16 Spin-Orbit Coupling The spin-orbit interaction is given by 1 ˆ ˆ • VSO = Vso(r)~l ~s ~2 · • We can calculate the dot product ˆ 1 ˆ ˆ ~2 3 ~l ~sˆ = (~j2 ~l2 ~sˆ2)= [j(j + 1) l(l + 1) ] · 2 − − 2 − − 4 D E 1 • Because of the addition rules, j = l ± 2 2 ~ 1 ~ˆ ˆ l 2 for j=l+ 2 l ~s = 2 1 · ( (l + 1) ~ for j=l- D E − 2 2 17 Spin-Orbit Coupling 1 • when the spin is aligned with the angular momentum j = l + the potential becomes more negative, 2 i.e. the well is deeper and the state more tightly bound. 1 • when spin and angular momentum are anti-aligned j = l the system's energy is higher. − 2 V • The difference in energy is ∆E = so (2l + 1) 2 Thus it increases with l . 18 Example • 3N level, with l=3 (1f level) j=7/2 or j=5/2 • Level is pushed so down that it forms its own shell 2p 2p 1/2 3N 1f5/2 1f 2p3/2 1f7/2 2N 19 20 Harmonic Oscillator Spin-Orbit Potential Specroscopic Spin-orbit Magic N l Notation D Number 0 4s 6 2 3d 4 2g . 58 184 6 1i 1i11/2 1i13/2 1 3p 3p1/2 3p3/2 5 3 2f 2f5/2 44 126 2f7/2 5 1h 1h9/2 1h11/2 0 3s 3s 4 1/2 32 82 2 2d 2d3/2 2d5/2 4 1g 1g7/2 1g9/2 1 2p 3 2p1/2 22 50 1f5/2 3 1f 2p3/2 1f7/2 8 28 2 0 2s 1d3/2 12 20 2 1d 2s1/2 1d5/2 1 1 1p 1p1/2 6 8 1p3/2 0 0 1s 1s1/2 2 2 21 MIT OpenCourseWare http://ocw.mit.edu 22.02 Introduction to Applied Nuclear Physics Spring 2012 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us