Eigenstate Thermalization in Sachdev-Ye-Kitaev Model & Schwarzian Theory

Eigenstate Thermalization in Sachdev-Ye-Kitaev Model & Schwarzian Theory

Eigenstate Thermalization in Sachdev-Ye-Kitaev model & Schwarzian theory by Pranjal Nayak [basesd on 1901.xxxxx] with Julian Sonner and Manuel Vielma University of Michigan, Ann Arbor January 23, 2019 Closed Quantum Systems Quantum Mechanics is unitary! (t) = (t, t ) (t ) |<latexit sha1_base64="0mRkoTRzgQR4aO7anRXxchLVKBU=">AAACGnicbVBNSwMxFMzWr1q/Vj16CRahBSnbIqgHoejFYwXXFrpLyaZpG5rNLslboaz9H178K148qHgTL/4b03YP2joQGGbm8fImiAXX4DjfVm5peWV1Lb9e2Njc2t6xd/fudJQoylwaiUi1AqKZ4JK5wEGwVqwYCQPBmsHwauI375nSPJK3MIqZH5K+5D1OCRipY9cevFjzEpQ9RWRfMHyBU48Sgd1xCY6h45SzgGFZpGMXnYozBV4k1YwUUYZGx/70uhFNQiaBCqJ1u+rE4KdEAaeCjQteollM6JD0WdtQSUKm/XR62xgfGaWLe5EyTwKeqr8nUhJqPQoDkwwJDPS8NxH/89oJ9M78lMs4ASbpbFEvERgiPCkKd7liFMTIEEIVN3/FdEAUoWDqLJgSqvMnLxK3VjmvODcnxfpl1kYeHaBDVEJVdIrq6Bo1kIsoekTP6BW9WU/Wi/VufcyiOSub2Ud/YH39AEbgn+c=</latexit> i U 0 | 0 i How come we observe thermal physics? How come we observe black hole formation? Plan of the talk ✓ Review of ETH ✓ Review of Sachdev-Ye-Kitaev model ✓ Numerical studies of ETH in SYK model ✓ ETH in the Schwarzian sector of the SYK model ✓ ETH in the Conformal sector of the SYK model ✓ A few thoughts on the bulk duals ✓ Summary and conclusion !3 Eigenstate Thermalization Hypothesis (ETH) Quantum Thermalization 5 Quantum Thermalization Classical thermalization: ergodicity & ⇐ chaos 5 Quantum Thermalization Classical thermalization: ergodicity & ⇐ chaos v.s. Quantum thermalization: Eigenstate Thermalisation Hypothesis S(E)/2 m n = (E)δ + e− f(E,!)R h |O| i Omc mn mn 5 Quantum Thermalization Classical thermalization: ergodicity & ⇐ chaos v.s. Quantum thermalization: Eigenstate Thermalisation Hypothesis S(E)/2 m n = (E)δ + e− f(E,!)R h |O| i Omc mn mn micro-canonical ensemble avg. energy of ensemble 5 Quantum Thermalization Classical thermalization: ergodicity & ⇐ chaos v.s. Quantum thermalization: Eigenstate Thermalisation Hypothesis S(E)/2 m n = (E)δ + e− f(E,!)R h |O| i Omc mn mn micro-canonical entropy 1 in RMT random matrix 5 Quantum Thermalization Classical thermalization: ergodicity & ⇐ chaos v.s. Quantum thermalization: Eigenstate Thermalisation Hypothesis S(E)/2 m n = (E)δ + e− f(E,!)R h |O| i Omc mn mn micro-canonical entropy 1 in RMT random matrix A generic excited state will then thermalise by dephasing it(E E ) S = c⇤c e i− j O E¯ + e− h |O| i i j Oij ! <latexit sha1_base64="HyA2Sf+KyMx+ET7x4XsHPBM8SRE=">AAACjnicbVHbbtQwEHXCrWyBLvDIy4gVUrl0lSAECFRRgSr1rUWwbaX1Npp4nay3jh3ZDmgV8jn8EG/8DU42laBlJI+OzvGZGY/TUgrrouh3EF67fuPmrY3bg807d+9tDe8/OLa6MoxPmJbanKZouRSKT5xwkp+WhmORSn6Snn9q9ZNv3Fih1Ve3KvmswFyJTDB0nkqGP6lElUsOtLQCfkBNGUo4bDzsGGrW8i5QWxVJLV4sG2CJOHvm8xL4WS0cUMkztw37iYAdn5feJfKFe9pcVPM+b6NSq7xT0Bj9Haj2k7WD14dNX4KmaGD/wg/P2wY7X5pkOIrGURdwFcQ9GJE+jpLhLzrXrCq4ckyitdM4Kt2sRuMEk7wZ0MryEtk55nzqocKC21ndrbOBJ56ZQ6aNP8pBx/7tqLGwdlWk/maBbmEvay35P21aueztrBaqrBxXbN0oqyQ4De3fwFwYzpxceYDMCD8rsAUaZM7/4MAvIb785Kvg+OU4jsbx51ejvY/9OjbII/KYbJOYvCF75IAckQlhwWYQB++C9+EwfB3uhh/WV8Og9zwk/0R48AcsZcRB</latexit> i,j X dephasing: on average thermal expectation value spectral chaos up to exponential in S of non-extensive operator 5 Sachdev-Ye-Kitaev (SYK) model: a Review SYK model: a new Guinea Pig !7 SYK model: a new Guinea Pig 1 J J4,5,7,8 10 1,2,4,6 7 4 9 6 3 J7,9,10,11 2 8 11 5 J2,3,5,6 [Sachdev-Ye ’93; Kitaev ’15] !7 SYK model: a new Guinea Pig 1 J J4,5,7,8 10 1,2,4,6 7 4 9 6 3 J7,9,10,11 2 8 11 5 J2,3,5,6 [Sachdev-Ye ’93; ‣ a model of N Majorana fermions Kitaev ’15] ‣ with all-to-all couplings ‣ and quenched random couplings !7 SYK model: a new Guinea Pig 1 J J4,5,7,8 10 1,2,4,6 7 4 9 6 3 J7,9,10,11 2 8 11 5 J2,3,5,6 [Sachdev-Ye ’93; ‣ a model of N Majorana fermions Kitaev ’15] ‣ with all-to-all couplings ‣ and quenched random couplings H = − J ψ ψ ψ ψ ∑ i1i2i3i4 i1 i2 i3 i4 1≤i1<i2<i3<i4≤N where, J is chosen from a Gaussian ensemble: 2 2 3! J ⟨Jijkl⟩ = 0 ⟨J ⟩ = ijkl N3 !7 Solvable Limit of SYK [Sachdev ’15; Parcollet, Georges ’00; Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] 8 Solvable Limit of SYK [Sachdev ’15; Parcollet, Georges ’00; Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ at large-N, it is often useful to use bi-local effective action 2 Scol J q 1 − = log Pf [∂ − Σ] + dτdτ′|! G(τ, τ′)! | − dτdτ′Σ! (τ′,! τ)G(τ, τ′)! N τ 2q ∫ 2 ∫ 8 Solvable Limit of SYK [Sachdev ’15; Parcollet, Georges ’00; Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ at large-N, it is often useful to use bi-local effective action 2 Scol J q 1 − = log Pf [∂ − Σ] + dτdτ′|! G(τ, τ′)! | − dτdτ′Σ! (τ′,! τ)G(τ, τ′)! N τ 2q ∫ 2 ∫ 1 ! is the Lagrange multiplier that imposes ! ! Σ(τ, τ′) G(τ, τ′) = ∑ ψi(τ) ψi(τ′) N i 8 Solvable Limit of SYK [Sachdev ’15; Parcollet, Georges ’00; Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ at large-N, it is often useful to use bi-local effective action 2 Scol J q 1 − = log Pf [∂ − Σ] + dτdτ′|! G(τ, τ′)! | − dτdτ′Σ! (τ′,! τ)G(τ, τ′)! N τ 2q ∫ 2 ∫ 1 ! is the Lagrange multiplier that imposes ! ! Σ(τ, τ′) G(τ, τ′) = ∑ ψi(τ) ψi(τ′) N i ‣ In the large-N limit, the saddle point equations are given by, ∂τ G(τ, τ′)! − [Σ * G](τ, τ′)! = δ(τ − τ′)! 2 q−1 J G (τ, τ′)! = Σ(τ, τ′)! 8 Solvable Limit of SYK [Sachdev ’15; Parcollet, Georges ’00; Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ at large-N, it is often useful to use bi-local effective action 2 Scol J q 1 − = log Pf [∂ − Σ] + dτdτ′|! G(τ, τ′)! | − dτdτ′Σ! (τ′,! τ)G(τ, τ′)! N τ 2q ∫ 2 ∫ 1 ! is the Lagrange multiplier that imposes ! ! Σ(τ, τ′) G(τ, τ′) = ∑ ψi(τ) ψi(τ′) N i ‣ In the large-N limit, the saddle point equations are given by, ∂τ G(τ, τ′)! − [Σ * G](τ, τ′)! = δ(τ − τ′)! 2 q−1 J G (τ, τ′)! = Σ(τ, τ′)! captures Melonic Physics! 8 Emergent Symmetry of SYK [Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] 9 Emergent Symmetry of SYK [Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ In the deep IR limit, | τ | J ≫ 1 , the saddle point equations can be replaced by ! ! ! ∂τ G(τ, τ′) − [Σ * G](τ, τ′) = δ(τ − τ′) 2 q−1 J G (τ, τ′)! = Σ(τ, τ′)! 9 Emergent Symmetry of SYK [Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ In the deep IR limit, | τ | J ≫ 1 , the saddle point equations can be replaced by ! ! ! ∂τ G(τ, τ′) − [Σ * G](τ, τ′) = δ(τ − τ′) 2 q−1 J G (τ, τ′)! = Σ(τ, τ′)! ‣ The action and the saddle point equations are symmetric under reparametrizations: 2/q Conformal Symmetry G(τ, τ′)! → (f′(! τ) f′(! τ′)! ) G (f(τ), f(τ′)! ) of 1D 2(1−1/q) Σ(τ, τ′)! → (f′(! τ) f′(! τ′)! ) Σ (f(τ), f(τ′)! ) 9 Emergent Symmetry of SYK [Kitaev ’15; Polchinski, Rosenhaus ’16; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16] ‣ In the deep IR limit, | τ | J ≫ 1 , the saddle point equations can be replaced by ! ! ! ∂τ G(τ, τ′) − [Σ * G](τ, τ′) = δ(τ − τ′) 2 q−1 J G (τ, τ′)! = Σ(τ, τ′)! ‣ The action and the saddle point equations are symmetric under reparametrizations: 2/q Conformal Symmetry G(τ, τ′)! → (f′(! τ) f′(! τ′)! ) G (f(τ), f(τ′)! ) of 1D 2(1−1/q) Σ(τ, τ′)! → (f′(! τ) f′(! τ′)! ) Σ (f(τ), f(τ′)! ) ‣ This symmetry is explicitly broken by considering the 1/J corrections. 9 Schwarzian in SYK [Kitaev ’15; Maldacena, Stanford ’16] 10 Schwarzian in SYK [Kitaev ’15; Maldacena, Stanford ’16] ‣ At low-energy break conformal symmetry. Leading soft- mode physics G0[f] f G0 G0'[f] f G ' 0 Schwarzian action 10 Schwarzian in SYK [Kitaev ’15; Maldacena, Stanford ’16] ‣ At low-energy break conformal symmetry. Leading soft- mode physics G0[f] f G0 G0'[f] f G ' 0 Schwarzian action ‣ Effective action on the ‘reparametrization modes’ f(τ) 1 exp − dτ {f(τ), τ} ∫ ��(2,ℝ) [ g2 ∫ ] 2 2 βJ f′′! ′! (! τ) 3 f′′! (! τ) g ∼ where, {f(τ), τ} = − N f′(! τ) 2 ( f′(! τ) ) 10 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] discrete tower of states 2n+1 �n ∼ ψi ∂ ψi hn = 2n + 1 + ϵn 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] continuum: Schwarzian discrete tower of states 1 S = − dτ {f(τ), τ} � ∼ ψ ∂2n+1ψ g2 ∫ n i i Diff 1 f(τ) ∈ (S ) hn = 2n + 1 + ϵn 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] continuum: Schwarzian discrete tower of states 1 S = − dτ {f(τ), τ} � ∼ ψ ∂2n+1ψ g2 ∫ n i i Diff 1 f(τ) ∈ (S ) hn = 2n + 1 + ϵn 2D BH 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] continuum: Schwarzian discrete tower of states 1 S = − dτ {f(τ), τ} � ∼ ψ ∂2n+1ψ g2 ∫ n i i Diff 1 f(τ) ∈ (S ) hn = 2n + 1 + ϵn Limit of conformal six-pt functions OPE coeffs. 2D BH ETH 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] continuum: Schwarzian discrete tower of states 1 S = − dτ {f(τ), τ} � ∼ ψ ∂2n+1ψ g2 ∫ n i i Diff 1 f(τ) ∈ (S ) hn = 2n + 1 + ϵn Ward identities for Limit of conformal Schwarzian six-pt functions ~ monodromy method OPE coeffs. 2D BH weak ETH ETH 11 Spectrum [Kitaev ’15; Polchinski, Rosenhaus ’15; Jevicki, Suzuki, Yoon ’16; Maldacena, Stanford ’16; Gross, Rosenhaus ’17] continuum: Schwarzian discrete tower of states 1 S = − dτ {f(τ), τ} � ∼ ψ ∂2n+1ψ g2 ∫ n i i Diff 1 f(τ) ∈ (S ) hn = 2n + 1 + ϵn Ward identities for Limit of conformal Schwarzian six-pt functions ~ monodromy method OPE coeffs.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    100 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us