Gerhard Klimeck Network for Computational Nanotechnology

Gerhard Klimeck Network for Computational Nanotechnology

NEMO5 on Blue Waters – A Flexible Package for Nanoelectronics Modeling Problems Gerhard Klimeck Network for Computational Nanotechnology PRAC: Accelerating Nano-scale Transistor Innovation PI: Gerhard Klimeck Blue Waters Symposium June 2018 Moore’s Law Forever? Number of transistors: Moores law is continuing http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 CPU’s are not getting faster! Number of transistors: Moores law is continuing Clock speed: no longer scaling http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Power is the Limit! Number of transistors: Moores law is continuing Clock speed: no longer scaling Power: todays limitation ~100W http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Limited Performance Improvements Number of transistors: Moores law is continuing Clock speed: no longer scaling Power: todays limitation ~100W Performance Gain: limited Supply voltage (Vdd) stopped http://jai-on-asp.blogspot.com scaling at around 2003 2005: free lunch is over, updated 2009 What is Special about 100W ? Power: todays limitation ~100W http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Intel Projection from 2004 How do we burn power? Switching Circuits & Leakage => Transistors Power: todays limitation ~100W http://jai-on-asp.blogspot.com CMOS Inverter Dynamic / Switching Power: Vdd P ØCharging a capacitor network leakage ! H L ! ∝ !!!!!!!!! conduct ØReduce frequency L N Vss ØReduce capacitance => device size K ØReduce voltage J Static Power: ØLeakage through transistors ! ∝ !!""!∝ 1/exp!(V!!)! L “Fundamental” Limit Vg S D log Id Metal Oxide Threshold n+ p n+ Vg↑ S≥60 mV/dec 0 Vdd Vg E x “Fundamental” Limit Vg S D log Id Metal Oxide Threshold n+ p n+ DOS(E), log f(E) Vg↑ S≥60 mV/dec ` Ef 0 Vdd Vg E x log ! ! ∝ −!! !! Device Scaling for Performance log I Dynamic / Switching Power: d ØCharging a capacitor network ! ! ∝ !!!!!!!!!! Ø Reduce supply voltage I OFF S≥60 mV/dec 0 Vdd Vg Vdd Vdd Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Device Scaling for Performance log Id I OFF S≥60 mV/dec From: Eric Pop, Nanotechnology 0 Vdd Vg Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Device Scaling for Performance log Id log Id ION S<<60 mV/dec I S≥60 mV/dec OFF S≥60 mV/dec IOFF 0 Vdd Vg 0 Vdd Vg Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Need a Different Switch log I G d n-type S D Metal ION Oxide p+ i n+ S<<60 mV/dec log f(E) S≥60 mV/dec IOFF Ef 0 Vdd Vg Cold injection Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Ultra-Thin-Body (8nm) InAs BTBT Device § Do not need phonons for direct current § Highly non-parabolic conduction band § Realistic valence band features Gerhard Klimeck UTB Band Edges • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control Doping 1x1018/cm3 § Gerhard Klimeck UTB: Current Hotspots in Energy • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control • Bandgap narrow at »Certain energies »Certain biases Gerhard Klimeck UTB Current Density in Energy • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control • Bandgap narrow at »Certain energies »Certain biases • 2 energy regions of Current flow »Low Ec / high Ev »High EC / low Ev Gerhard Klimeck UTB Current as a function of Gate Voltage • Current vs. Gate Voltage Gerhard Klimeck Application to pin InAs UTB and Nanowire Single-Gate UTB 20nm 20nm 6nm 6nm GAA Nanowire 20nm -3 NA=ND=5e19 cm 6nm t =1nm ox Double-Gate UTB Gerhard Klimeck BTBT in pin InAs Devices – SG-UTB / DG-UTB / NW Subthreshold Swing @Vds=0.2 V Nanowires can deliver very steep turn-offs! Gerhard Klimeck Tunnel FETs J. Charles, P. Sarangapani, D. Lemus, Chin Yi Chen, P. Long, Tarek Ameen, X. Guo, T. Kubis, G. Klimeck Nitride Tunnel Hetero-structures Multi-Scale, Multi-Physics 23Partitioning is critical Nitride Tunnel Hetero-structures ON and OFF current need careful24 Geometry designs phonon scattering degrades transistor performance Local current density 1016 1014 1012 scattering 1010 A/(eV*m) BlueWaters simulation: Phonon scattering degrades ON/OFF ratio oF 3HJ TFETs. At 30nm Lg , VDD must be increased ~0.07V to maintain on/oFF ratio 25 5. Chemically doped tunneling FETs Channel thickness optimization Application: Tunneling FETs Impact: § Low power electronics. § TFET’s performance Ion/Ioff can be improved up § Mobile/medical devices. 4 Simulation method: 10 if optimized channel thickness is used. § Quantum transmitting boundary method coupled with Poisson equation WSe2 BP InAs § 10 band WSe2 , Phosphorene (BP), and InAs tight binding Hamiltonian Achievement: V § Channel thickness design rule. DD ü Compact model developed. VDD source oxide drain oxide Details: arXiv:1804.11034; https://arxiv.org/abs/1804.11034 26 Benchmarking by industry: Charge-devices continue to shine D. Nikonov, I. Young (Intel) 102 2012 ST: Spin-Torque Charge-based devices outperform ST transfer 101 others in electronic switching Spin-wave triad ST oscillator 0 All-spin 10 logic ST Transfer/ Graphene pn junction SpinFET BISFET ST Domain-Wall Nanomagnet -1 majority 10 CMOS high performance gate Logic Heterojunction CMOS low power -2 10 III-V Energy(fJ) Graphene nanoribbon 10-3 Preferred corner Tunnel-FETs 10-4 10-1 100 101 102 103 104 Delay (ps) Energy vs delay of inverters with fanout 4 with current-controlled switching, Vdd=0.01 V Power Problem: Tunneling Transistors to the Rescue! For a little while! Intel Roadmap Today: non-planar 3D devices Better gate control! Intel 22nm finFET http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Today: non-planar 3D devices Better gate control! 22nm = 176 atoms 8nm = 64 atoms http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Today: non-planar 3D devices Better gate control! 1,085 atoms 22nm = 176 atoms 8nm = 64 atoms http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Roadmap of finite atoms! Atomistic Modeling => NEMO nm Node 22 14 10 7 5 Node atoms 176 122 80 56 40 Critical atoms 64 44(?) 29(?) 20(?) 14(?) Electrons 160-190 64-80 30-38 18-23 11-15 Nanoelectronics Today • $300 billion semiconductor industry • International Technology Roadmap for Semiconductors (ITRS) • Moore’s Law • Countable number of atoms • Quantum effects • Devices (transistors) • Smaller, faster, more energy efficient • Designs, materials Band-to-band tunneling Topological insulators Single atom transistors IEEE Elec. Dev. Lett. 30, 602 (2009) Nature Physics 6, 584 (2010) Nature Nanotechnology 7, 242 (2012) http://www.chipworks.com/media/wpmu/uploads/blogs.dir34 /2/files/2012/08/Intel22nmPMOSfin.jpg NEMO5 - Bridging the Scales From Ab-Initio to Realistic Devices Ab-Initio TCAD Goal: Approach: • Device performance with realistic • Ab-initio: extent, heterostructures, fields, etc. • Bulk constituents for new / unknown materials • Small ideal superlattices Problems: • Map ab-initio to tight binding • Need ab-initio to explore new (binaries and superlattices) material properties • Current flow in ideal structures • Ab-initio cannot model non- • Study devices perturbed by: equilibrium. • Large applied biases • TCAD uses quantum corrections • Disorder 35 • Phonons Quantum Transport far from Equilibrium Macroscopic dimensions NonLaw-Equilibriumof Equilibrium Quantum: Statisticalρ = exp (−( HMechanics− µN)/kT) Diffusive Atomic Ballistic Drift / dimensions Diffusion Quantum Σs Boltzmann Unified model Transport µ1 H µ2 Non-WhichEquilibrium GreenFormalism? Functions Σ1 Σ2 S D SILICON S D INSULATOR VG VD VG VD Gerhard Klimeck,I Supriyo Datta I Multi-Scale Modeling Atom Geometry Positions Construction ~10-50 million o Valence Force Field Atomistic atoms Strain (VFF) Method Relaxation Piezoelectric Hamiltonian Electrical / o Piezoelectric eFF. Valence Potential Construction Magnetic field Pol. charge density Electrons o Empirical tight binding Optical Prop. ~0.5-10 million Single Particle 3 5 States Electronic Str sp d s* + spin orbit e-e Many Body Optical Prop. o SCP: Poisson + LDA interactions Interactions Electronic Str Few States o Slater Determinants A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp. 23,000 cores 80 cores 30,000 cores 220,000 co 100,000 cores 38 A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp. 23,000 cores 80 cores 30,000 cores 220,000 co 100,000 cores 39 A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    70 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us