
NEMO5 on Blue Waters – A Flexible Package for Nanoelectronics Modeling Problems Gerhard Klimeck Network for Computational Nanotechnology PRAC: Accelerating Nano-scale Transistor Innovation PI: Gerhard Klimeck Blue Waters Symposium June 2018 Moore’s Law Forever? Number of transistors: Moores law is continuing http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 CPU’s are not getting faster! Number of transistors: Moores law is continuing Clock speed: no longer scaling http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Power is the Limit! Number of transistors: Moores law is continuing Clock speed: no longer scaling Power: todays limitation ~100W http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Limited Performance Improvements Number of transistors: Moores law is continuing Clock speed: no longer scaling Power: todays limitation ~100W Performance Gain: limited Supply voltage (Vdd) stopped http://jai-on-asp.blogspot.com scaling at around 2003 2005: free lunch is over, updated 2009 What is Special about 100W ? Power: todays limitation ~100W http://jai-on-asp.blogspot.com 2005: free lunch is over, updated 2009 Intel Projection from 2004 How do we burn power? Switching Circuits & Leakage => Transistors Power: todays limitation ~100W http://jai-on-asp.blogspot.com CMOS Inverter Dynamic / Switching Power: Vdd P ØCharging a capacitor network leakage ! H L ! ∝ !!!!!!!!! conduct ØReduce frequency L N Vss ØReduce capacitance => device size K ØReduce voltage J Static Power: ØLeakage through transistors ! ∝ !!""!∝ 1/exp!(V!!)! L “Fundamental” Limit Vg S D log Id Metal Oxide Threshold n+ p n+ Vg↑ S≥60 mV/dec 0 Vdd Vg E x “Fundamental” Limit Vg S D log Id Metal Oxide Threshold n+ p n+ DOS(E), log f(E) Vg↑ S≥60 mV/dec ` Ef 0 Vdd Vg E x log ! ! ∝ −!! !! Device Scaling for Performance log I Dynamic / Switching Power: d ØCharging a capacitor network ! ! ∝ !!!!!!!!!! Ø Reduce supply voltage I OFF S≥60 mV/dec 0 Vdd Vg Vdd Vdd Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Device Scaling for Performance log Id I OFF S≥60 mV/dec From: Eric Pop, Nanotechnology 0 Vdd Vg Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Device Scaling for Performance log Id log Id ION S<<60 mV/dec I S≥60 mV/dec OFF S≥60 mV/dec IOFF 0 Vdd Vg 0 Vdd Vg Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Need a Different Switch log I G d n-type S D Metal ION Oxide p+ i n+ S<<60 mV/dec log f(E) S≥60 mV/dec IOFF Ef 0 Vdd Vg Cold injection Static Power: ØLeakage through transistors ! ∝ !!"" ∝ 1/exp!(V!!)! Ultra-Thin-Body (8nm) InAs BTBT Device § Do not need phonons for direct current § Highly non-parabolic conduction band § Realistic valence band features Gerhard Klimeck UTB Band Edges • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control Doping 1x1018/cm3 § Gerhard Klimeck UTB: Current Hotspots in Energy • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control • Bandgap narrow at »Certain energies »Certain biases Gerhard Klimeck UTB Current Density in Energy • 1D quantization => Bandgap raised from bulk 0.37eV => ~0.6eV • RealistiC Poisson Solution Doping 1x1018/cm3 • High doping regions flat bands • Central gate region good Control • Bandgap narrow at »Certain energies »Certain biases • 2 energy regions of Current flow »Low Ec / high Ev »High EC / low Ev Gerhard Klimeck UTB Current as a function of Gate Voltage • Current vs. Gate Voltage Gerhard Klimeck Application to pin InAs UTB and Nanowire Single-Gate UTB 20nm 20nm 6nm 6nm GAA Nanowire 20nm -3 NA=ND=5e19 cm 6nm t =1nm ox Double-Gate UTB Gerhard Klimeck BTBT in pin InAs Devices – SG-UTB / DG-UTB / NW Subthreshold Swing @Vds=0.2 V Nanowires can deliver very steep turn-offs! Gerhard Klimeck Tunnel FETs J. Charles, P. Sarangapani, D. Lemus, Chin Yi Chen, P. Long, Tarek Ameen, X. Guo, T. Kubis, G. Klimeck Nitride Tunnel Hetero-structures Multi-Scale, Multi-Physics 23Partitioning is critical Nitride Tunnel Hetero-structures ON and OFF current need careful24 Geometry designs phonon scattering degrades transistor performance Local current density 1016 1014 1012 scattering 1010 A/(eV*m) BlueWaters simulation: Phonon scattering degrades ON/OFF ratio oF 3HJ TFETs. At 30nm Lg , VDD must be increased ~0.07V to maintain on/oFF ratio 25 5. Chemically doped tunneling FETs Channel thickness optimization Application: Tunneling FETs Impact: § Low power electronics. § TFET’s performance Ion/Ioff can be improved up § Mobile/medical devices. 4 Simulation method: 10 if optimized channel thickness is used. § Quantum transmitting boundary method coupled with Poisson equation WSe2 BP InAs § 10 band WSe2 , Phosphorene (BP), and InAs tight binding Hamiltonian Achievement: V § Channel thickness design rule. DD ü Compact model developed. VDD source oxide drain oxide Details: arXiv:1804.11034; https://arxiv.org/abs/1804.11034 26 Benchmarking by industry: Charge-devices continue to shine D. Nikonov, I. Young (Intel) 102 2012 ST: Spin-Torque Charge-based devices outperform ST transfer 101 others in electronic switching Spin-wave triad ST oscillator 0 All-spin 10 logic ST Transfer/ Graphene pn junction SpinFET BISFET ST Domain-Wall Nanomagnet -1 majority 10 CMOS high performance gate Logic Heterojunction CMOS low power -2 10 III-V Energy(fJ) Graphene nanoribbon 10-3 Preferred corner Tunnel-FETs 10-4 10-1 100 101 102 103 104 Delay (ps) Energy vs delay of inverters with fanout 4 with current-controlled switching, Vdd=0.01 V Power Problem: Tunneling Transistors to the Rescue! For a little while! Intel Roadmap Today: non-planar 3D devices Better gate control! Intel 22nm finFET http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Today: non-planar 3D devices Better gate control! 22nm = 176 atoms 8nm = 64 atoms http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Today: non-planar 3D devices Better gate control! 1,085 atoms 22nm = 176 atoms 8nm = 64 atoms http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg Roadmap of finite atoms! Atomistic Modeling => NEMO nm Node 22 14 10 7 5 Node atoms 176 122 80 56 40 Critical atoms 64 44(?) 29(?) 20(?) 14(?) Electrons 160-190 64-80 30-38 18-23 11-15 Nanoelectronics Today • $300 billion semiconductor industry • International Technology Roadmap for Semiconductors (ITRS) • Moore’s Law • Countable number of atoms • Quantum effects • Devices (transistors) • Smaller, faster, more energy efficient • Designs, materials Band-to-band tunneling Topological insulators Single atom transistors IEEE Elec. Dev. Lett. 30, 602 (2009) Nature Physics 6, 584 (2010) Nature Nanotechnology 7, 242 (2012) http://www.chipworks.com/media/wpmu/uploads/blogs.dir34 /2/files/2012/08/Intel22nmPMOSfin.jpg NEMO5 - Bridging the Scales From Ab-Initio to Realistic Devices Ab-Initio TCAD Goal: Approach: • Device performance with realistic • Ab-initio: extent, heterostructures, fields, etc. • Bulk constituents for new / unknown materials • Small ideal superlattices Problems: • Map ab-initio to tight binding • Need ab-initio to explore new (binaries and superlattices) material properties • Current flow in ideal structures • Ab-initio cannot model non- • Study devices perturbed by: equilibrium. • Large applied biases • TCAD uses quantum corrections • Disorder 35 • Phonons Quantum Transport far from Equilibrium Macroscopic dimensions NonLaw-Equilibriumof Equilibrium Quantum: Statisticalρ = exp (−( HMechanics− µN)/kT) Diffusive Atomic Ballistic Drift / dimensions Diffusion Quantum Σs Boltzmann Unified model Transport µ1 H µ2 Non-WhichEquilibrium GreenFormalism? Functions Σ1 Σ2 S D SILICON S D INSULATOR VG VD VG VD Gerhard Klimeck,I Supriyo Datta I Multi-Scale Modeling Atom Geometry Positions Construction ~10-50 million o Valence Force Field Atomistic atoms Strain (VFF) Method Relaxation Piezoelectric Hamiltonian Electrical / o Piezoelectric eFF. Valence Potential Construction Magnetic field Pol. charge density Electrons o Empirical tight binding Optical Prop. ~0.5-10 million Single Particle 3 5 States Electronic Str sp d s* + spin orbit e-e Many Body Optical Prop. o SCP: Poisson + LDA interactions Interactions Electronic Str Few States o Slater Determinants A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp. 23,000 cores 80 cores 30,000 cores 220,000 co 100,000 cores 38 A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp. 23,000 cores 80 cores 30,000 cores 220,000 co 100,000 cores 39 A Journey Through Nanoelectronics Tools NEMO and OMEN NEMO-1D NEMO-3D NEMO3Dpeta OMEN NEMO5 Transport Yes - - Yes Yes Dim. 1D any any any any Atoms ~1,000 50 Million 100 Million ~140,000 100 Million Crystal [100] [100] [100], Any Any Cubic, ZB Cubic, ZB Cubic,ZB, WU Any Any Strain - VFF VFF - MVFF Multi- - Spin, physics Classical Parallel 3 levels 1 level 3 levels 4 levels 4 levels Comp.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages70 Page
-
File Size-