
AVL List GmbH (Headquarters) State of the Art Development Methodologies for Hybrids and e- Drives 29.11.2018 PDiM 18, Chalmers Conference Centre Andreas Volk Public Content Introduction Technology selection - Do the right thing Validation of new design concepts – Do the things right Integrated design verification Summary and outlook Public Andreas Volk | DTV | 29 November 2018 | 2 Content Introduction Technology selection - Do the right thing Validation of new design concepts – Do the things right Integrated design verification Summary and outlook Public Andreas Volk | DTV | 29 November 2018 | 3 AVL – Transmission Overview Concept / Structure Calibration Transmission synthesis, ACT – test bed Specification, Dimensioning calibration In-vehicle calibration DRIVE™ evaluation Detail Design & Analysis Integration & Testing CAD Design Rig and vehicle testing Structural and dynamic analysis Software & Controls Specification & coding Safety Public Andreas Volk | DTV | 29 November 2018 | 4 AVL – Transmission Overview CURRENT NUMBER OF EMPLOYEES: ~400 Public Andreas Volk | DTV | 29 November 2018 | 5 KEY FEATURES OF CONVENTIONAL (ICE) AND BATTERY ELECTRIC POWERTRAIN (BEV) excellent poor Pollutants BEV ICE CO2 – Tank to wheel CO2 – Lifetime – EU mix CO2 – Lifetime – China mix Refueling / Charging time Weight / Range Cost / Range Low speed performance High speed performance Transients NVH Total cost of ownership (actual status) qualitative Electrification and ICE offer quite complementary characteristics Public Andreas Volk | DTV | 29 November 2018 | 6 Content Introduction Technology selection - Do the right thing Validation of new design concepts – Do the things right Integrated design verification Summary and outlook Public Andreas Volk | DTV | 29 November 2018 | 7 Overview typical EV-Drive Architectures LAYSHAFT Co-Axial LAYSHAFT Offset PLANETARY GEAR Co-Axial PLANETARY GEAR Offset I I I M I M M M Packaging + package Complexity + efficiency Efficiency - NVH Cost bad good better best Public Andreas Volk | DTV | 29 November 2018 | 8 EV-Drive Transmissions Influence of subsystem parameters LAYSHAFT Co-Axial LAYSHAFT Offset PLANETARY GEAR Co-Axial PLANETARY GEAR Offset I Number of gears I I M I + Low complexity + Low cost + SmallM package M+ Good NVH + Low weight M + High efficiency + Good Performance - High weight 0 Medium package + Low weight - Big package 0 Medium efficiency + Red. motor torque Speed - Low efficiency - 1 Direct (0) Direct - Grade ability - Cost of transmission Speed or more Speed - High current - - Complexity 2 (drive away) E-motor for 1-Speed transmission: • max. torque 313 Nm • max. power 70 kW E-motor for 2-speed transmission: Example • max. torque 170 Nm • max. power 70 kW Public Andreas Volk | DTV | 29 November 2018 | 9 Challenges – Driveline & EV-Driveline Efficiently identify product design parameters, that perfectly meet technological and monetary customer requirements Minimize development time with maximum possible product maturity Public Andreas Volk | DTV | 29 November 2018 | 10 Content Introduction Technology selection - Do the right thing Validation of new design concepts – Do the things right Integrated design verification Summary and outlook Public Andreas Volk | DTV | 29 November 2018 | 11 AVL Validation Methodology DVP&R Design Verification Plan & Report FMEA CAE Engineering Requirements Requirements Reports Testing Simulation System analysis on analysis component level to Failure mode Failure mode mode Failure determine failure modes based test Test and damaging operation program specification Damage Damage Calculation Verification/ Validation Public Andreas Volk | DTV | 29 November 2018 | 12 Duty Cycle Generation Input definition Load data Duty cycle generation definition • Markets • Lifetime targets • • Track Profile • Evaluation & • 300.000 km selection balancing of part • AVL CRUISE specific damages simulation • Duty cycle definition • Road profile • System analysis distribution • Damage • Design duty Base Data Sheet for Vehicle Simulation Back to INDEX cycle verification Simulation Model Input Data: Vehicle Specification Vehicle & Base Data calculation 1 Required Input 2 Optional Input Information about Data Sources 3 4 • Vehicle Vehicle Model Year Vehicle Class E-Drive Description Transmission Description Drivetrain Description Performance based on published value or measurement data: Maximum velocity km/h km/h Vehicle data Vehicle Start Velocity End Velocity Time • Test program Additional Comments km/h km/h sec Full Load 0 100 Performance The velocities here are just examples. Please feel free to define other velocities-time to specify similar 80 120 simulation input Elasticity performance target General Vehicle Data: Gas Tank Volume Liter Total Length 4462 mm Total With 1865 mm If available, please attach a picture of the Vehicle (with Total Height 1632 mm Dimensions). Distance from Hitch to front axle 3620 mm only required in case of vehicle model with trailer Wheelbase 2675 mm In addition, please attach a schematic picture/drawing Curb Weight (=dry weight) 2300 kg of the powertrain. Gross Weight 3200 kg Weight Distribution between 55 / 45 FA / RA for curb weight condition generation Front Axle (FA) & Rear Axle (RA) 51 / 49 FA / RA for gross weight condition Brake Distribution between Front & Rear Axle FA / RA FA = Front Axle; RA = Rear Axle Inertia Test Weight (ITW): Which Cycle? Please replace xxx with the Name of the Cycle For the Driving Resistance: xxx kg Either xxx kg a physical description of the Vehicle is necessary (with including fuel, oil, driver, ... xxx kg Including 100kg (NEDC), 136kg (ftp, JP1015) Frontal Area, Drag Coefficient and Rolling Resistance of Vehicle Component Vehicle Data data definition xxx kg the Tire) xxx kg or Frontal Area 2,52 m^2 the Driving Resistance Function (A, B, C) Drag coefficient 0,34 --- or Driving Resistance Coefficient A N Coast Down Measurement Driving Resistance Coefficient B N/kmh Driving resistance function Driving Resistance Coefficient C N/(kmh2) Reference Vehicle Mass kg Durability Test delta n-out = Durability Test G1 Gang 1 50/min/sec No. Cycles = 150 i=14,75 Moment n- INPUT n-Output Dauer [Nm] [RPM] [min] 250 10000 max 200 7.995 5 min -75 2.006 0 200 8000 Umdrehungen 150 6000 Moment Drehzahl Dauer Laufzeit Leistung Umdrehungenkumuliert [Nm] [RPM] [min] [min] [kW] [rev] [rev] 100 4000 1 0 2.006 1 1 0,0 2.006 2.006 2 100 7.995 3 4 83,7 23.984 25.990 3 -40 2.006 3 7 -8,4 6.018 32.008 Torque, Torque, Nm 50 2000 4 200 2.006 3 10 42,0 6.018 38.026 Input Speed, rpm 5 0 2.006 1 11 0,0 2.006 40.032 0 0 6 -75 7.995 1 12 -62,8 7.995 48.026 0 10 20 30 40 50 60 70 80 7 200 2.006 2 14 42,0 4.012 52.038 8 0 2.006 1 15 0,0 2.006 54.044 -50 -2000 9 -75 2.006 1 16 -15,8 2.006 56.050 10 0 2.006 1 17 0,0 2.006 58.056 -100 -4000 11 100 7.995 1 18 83,7 7.995 66.051 Time, min 12 200 2.006 1 19 42,0 2.006 68.057 • Reference 13 0 2.006 1 20 0,0 2.006 70.063 Moment [Nm] Drehzahl [RPM] 14 100 2.006 2 22 21,0 4.012 74.075 15 200 2.006 1 23 42,0 2.006 76.081 16 0 3.997 1 24 0,0 3.997 80.078 R UN IN 17 -75 7.995 5 29 -62,8 39.973 120.050 NO. CYCLES = 1 Load spectra MET150 i=9,93 18 0 2.006 1 30 0,0 2.006 122.056 250 10000 19 200 2.006 5 35 42,0 10.030 132.086 X%ile ME customer Usage space Damage Value 6 (comparison with Ref-1) Market India 20 0 2.006 2 37 0,0 4.012 136.098 Road 200 8000 Milage target 300.000 km India Europe Korea Total number of revolutions 1,38E+09 Profile 21 200 2.006 5 42 42,0 10.030 146.128 Type % % % vehicle code : - Urban 0,55 0,50 0,55 Total distance [km] : 308.878 22 0 2.006 2 44 0,0 4.012 150.140 vehicle curb weight [kg] : 2300 SubUrban 0,15 0,30 0,15 150 6000 Gross vehicle mass [kg] : 3200 Highway 0,20 0,15 0,20 DV regen. Torque 5,35E+21 23 150 3.997 5 49 62,8 19.986 170.127 Trailer weight [kg] : - Off-Road 0,10 0,05 0,10 DV drive Torque 1,43E+22 24 100 3.997 1 50 41,9 3.997 174.124 Dyn.rolling.radius [m]: 0,354 Sum 1 1 1 Duty value (We=6) 1,96E+22 Electric machine : 400Nm/155kW 25 0 2.006 1 51 0,0 2.006 176.130 100 4000 customer load max. Rec. Torque (70% T_max) 280 Nm 26 175 3.997 5 56 73,3 19.986 196.116 Gear ratio : 9,93 (fwd) 27 0 2.006 1 57 0,0 2.006 198.122 Laststufenlauf VAG J1 Temperaturen Load spectra MET150 i=9,93 Duty value (We=6) 50 2000 2x 8 Zyklen 80°C Torque, Nm Input Speed [rpm] 28 175 3.997 5 62 73,3 19.986 218.108 Stufenlastlauf Teil 1 Mmax (25 Zyklen zu je 56 Laststufen) 2 Zyklen 100°C 1x 2 Zyklen 100°C No. Cycles [-] No. Cycles [-] -4500 -3500 -2500 -1500 -500 500 1500 2500 3500 4500 5500 6500 7500 8500 9500 10500 11500 12500 13500 14500 Cycles DV clas (k=6) DV (k=6) -500 -500 1 Zyklus 25 Zyklen 1 Zyklus 120°C 1 Zyklus 120°C 29 0 2.006 1 63 0,0 2.006 220.114 Abtriebs- Abtriebs- Abtriebs- -490 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 1,38E+16 0,00E+00 Antriebs- Antriebs- Abtriebs- Nr.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages52 Page
-
File Size-