
Microphone (Edited from Wikipedia) SUMMARY A microphone, colloquially nicknamed mic or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and public events, motion picture production, live and recorded audio engineering, sound recording, two-way radios, megaphones, radio and television broadcasting, and in computers for recording voice, speech recognition, VoIP, and for non-acoustic purposes such as ultrasonic sensors or knock sensors. Several different types of microphone are in use, which employ different methods to convert the air pressure variations of a sound wave to an electrical signal. The most common are the dynamic microphone, which uses a coil of wire suspended in a magnetic field; the condenser microphone, which uses the vibrating diaphragm as a capacitor plate, and the piezoelectric microphone, which uses a crystal of piezoelectric material. Microphones typically need to be connected to a preamplifier before the signal can be recorded or reproduced. HISTORY In order to speak to larger groups of people, a need arose to increase the volume of the human voice. The earliest devices used to achieve this were acoustic megaphones. Some of the first examples, from fifth century BC Greece, were theater masks with horn- shaped mouth openings that acoustically amplified the voice of actors in amphitheatres. In 1665, the English physicist Robert Hooke was the first to experiment with a medium other than air with the invention of the "lovers' telephone" made of stretched wire with a cup attached at each end. Charles Wheatstone invented an early modern microphone. He invented the term “microphone,” even though his version doesn’t resemble the modern conception of the microphone today. German inventor Johann Philipp Reis designed an early sound transmitter that used a metallic strip attached to a vibrating membrane that would produce intermittent 1 current. Better results were achieved with the "liquid transmitter" design in Scottish- American Alexander Graham Bell's telephone of 1876 – the diaphragm was attached to a conductive rod in an acid solution. These systems, however, gave a very poor sound quality. The first microphone that enabled proper voice telephony was the (loose-contact) carbon microphone. This was independently developed by David Edward Hughes in England and Emile Berliner and Thomas Edison in the US. Although Edison was awarded the first patent (after a long legal dispute) in mid-1877, Hughes had demonstrated his working device in front of many witnesses some years earlier, and most historians credit him with its invention. The carbon microphone is the direct prototype of today's microphones and was critical in the development of telephony, broadcasting and the recording industries. Thomas Edison refined the carbon microphone into his carbon-button transmitter of 1886. This microphone was employed at the first ever radio broadcast, a performance at the New York Metropolitan Opera House in 1910. In 1916, E.C. Wente of Western Electric developed the next breakthrough with the first condenser microphone. In 1923, the first practical moving coil microphone was built. "The Marconi Skykes" or "magnetophon", developed by Captain H. J. Round, was the standard for BBC studios in London. This was improved in 1930 by Alan Blumlein and Herbert Holman who released the HB1A and was the best standard of the day. Also in 1923, the ribbon microphone was introduced, another electromagnetic type, believed to have been developed by Harry F. Olson, who essentially reverse-engineered a ribbon speaker. Over the years these microphones were developed by several companies, most notably RCA that made large advancements in pattern control, to give the microphone directionality. With television and film technology booming there was demand for high fidelity microphones and greater directionality. Electro-Voice responded with their Academy Award-winning shotgun microphone in 1963. The latest research developments include the use of fibre optics, lasers and interferometers. 2 DYNAMIC MICROPHONES The dynamic microphone (also known as the moving-coil microphone) works via electromagnetic induction. They are robust, relatively inexpensive and resistant to moisture. This, coupled with their potentially high gain before feedback, makes them ideal for on-stage use. Dynamic microphones use the same dynamic principle as in a loudspeaker, only reversed. A small movable induction coil, positioned in the magnetic field of a permanent magnet, is attached to the diaphragm. When sound enters through the windscreen of the microphone, the sound wave moves the diaphragm. When the diaphragm vibrates, the coil moves in the magnetic field, producing a varying current in the coil through electromagnetic induction. A single dynamic membrane does not respond linearly to all audio frequencies. For this reason some microphones utilize multiple membranes for the different parts of the audio spectrum and then combine the resulting signals. Combining the multiple signals correctly is difficult and designs that do this are rare and tend to be expensive. CHARLES WHEATSTONE Charles Wheatstone was born in Barnwood, Gloucester, in England in 1802. His father was a music-seller in the town, who moved to London, four years later, becoming a teacher of the flute. Charles, the second son, went to a village school, near Gloucester, and afterwards to several institutions in London. One of them was in Kennington, and kept by a Mrs. Castlemaine, who was astonished at his rapid progress. From another he ran away, but was captured at Windsor. As a boy he was very shy and sensitive, preferring to retire into an attic, without any other company than his own thoughts. When he was about fourteen years old he was apprenticed to his uncle and namesake, a maker and seller of musical instruments in London; but he showed little taste for handicraft or business, and loved better to study books. His father encouraged him in this, and finally took him out of the uncle's charge. At the age of fifteen, Wheatstone translated French poetry, and wrote two songs, one of which was given to his uncle, who published it without knowing it as his nephew's composition. Some lines of his on the lyre became the motto of an engraving by Bartolozzi. Small for his age, but with a fine brow, and intelligent blue eyes, he often visited an old book-stall in the vicinity of Pall Mall, which was then a dilapidated and unpaved thoroughfare. 3 Most of his pocket-money was spent in purchasing the books which had taken his fancy, whether fairy tales, history, or science. One day, to the surprise of the bookseller, he coveted a volume on the discoveries of Volta in electricity, but not having the price, he saved his pennies and secured the volume. It was written in French, and so he was obliged to save again, until he could buy a dictionary. Then he began to read the volume, and, with the help of his elder brother, William, to repeat the experiments described in it, with a home-made battery, in the scullery behind his father's house. In constructing the battery, the boy philosophers ran short of money to procure the requisite copper-plates. They had only a few copper coins left. A happy thought occurred to Charles, who was the leading spirit in these researches, 'We must use the pennies themselves,' said he, and the battery was soon complete. In September 1821, Wheatstone brought himself into public notice by exhibiting the 'Enchanted Lyre,' or 'Aconcryptophone,' at a music-shop at Pall Mall and in the Adelaide Gallery. It consisted of a mimic lyre hung from the ceiling by a cord, and emitting the strains of several instruments – the piano, harp, and dulcimer. In reality it was a mere sounding box, and the cord was a steel rod that conveyed the vibrations of the music from the several instruments which were played out of sight and ear-shot. At this period Wheatstone made numerous experiments on sound and its transmission. Besides transmitting sounds to a distance, Wheatstone devised a simple instrument for augmenting feeble sounds, to which he gave the name of 'Microphone.' It consisted of two slender rods, which conveyed the mechanical vibrations to both ears, and is quite different from the electrical microphone of Professor Hughes. 4.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages4 Page
-
File Size-