Quantum Mechanical Pressure

Quantum Mechanical Pressure

Quantum Mechanical Pressure Frank Rioux CSB|SJU Quantum mechanics is based on the concept of wave-particle duality, which for massive particles is expressed simply and succinctly by the de Broglie wave equation. hh λ = = mv p On the left side is the wave property, λ, and on the right the particle property, momentum. These incompatible concepts are united in a reciprocal relationship mediated by the ubiquitous Planck’s constant. Using de Broglie’s equation in the classical expression for kinetic energy converts it to its quantum mechanical equivalent. p22h KE == 22mmλ 2 Because objects with wave-like properties are subject to interference phenomena, quantum effects emerge when they are confined by some restricting potential energy function. For example, to avoid self-interference, a particle in an infinite one-dimensional square- well potential (PIB, particle in a box) of width a must form standing waves. The required restriction on the allowed wave lengths, 2a λ == n 1, 2,… n quantizes kinetic energy. nh22 KE() n = 8ma2 In addition to providing a simple explanation for the origin of energy quantization, the PIB model shows that reducing the size of the box increases the kinetic energy dramatically. This “repulsive” character of quantum mechanical kinetic energy is the ultimate basis for the stability of matter. It also provides, as we see now, a quantum interpretation for gas pressure. To show this we will consider a particle in the ground state of a three-dimensional box 3 (nx = ny = nz =1) of width a and volume a . Its kinetic energy is, 33hhA22 KE ==2 22 = 8ma 8mV33 V According to thermodynamics, pressure is the negative of the derivative of energy with respect to volume. dKE2 A P =− = 5 dV 3 V 3 Using equation (5) to eliminate A from equation (6) yields, 2 KE P = 3 V This result has the same form as that obtained by the kinetic theory of gases for an individual gas molecule. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us