Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021 Dysprosium-doped zinc tungstate nanospheres as highly efficient heterogeneous catalysts in green oxidation of terpenic alcohols with hydrogen peroxide Daniel Carreira Batalha,a Kellen Cristina Mesquita Borges,b Rosana de Fátima Gonçalves,b Murillo Henrique de Matos Rodrigues,b Mário Júnior Godinho,b Humberto Vieira Fajardoc and Márcio José da Silva*a a. Chemistry Department, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570‑900, Brazil. b. Chemistry Institute, Federal University of Catalão, Catalão, Goiás, CEP 75.704-020, Brazil. c. Chemistry Department, Federal University of Ouro Preto, Ouro Preto, CEP 35400-000, Minas Gerais, Brazil. SUPPLEMENTAL MATERIAL Neraldehyde epoxide Nerol epoxide Neraldehyde Others Conversion K8SiW11O39 [1] Na2WO4 [2] ZnWO4 - 2.0% Dy This study s Na PW O [3] t 7 11 39 s y l a t a Cs8SiW11O39 [4] C Nb2O5 [5] WO3 - SiO2 - 700 [6] Nb2O5 - SiO2 (a) [7] 0 20 40 60 80 100 Nerol conversion an d selectivities / % Ref.1 - Nerol:H2O2 (1:3); Catalyst (1.3 mol %); solvent DMA; 3 h; 363 K Ref. 2 - Nerol:H2O2 (1:2); Catalyst (1.3 mol %); solvent DMA; 4 h; 363 K This study - Nerol:H2O2 (1:2); Catalyst (3.5 mol %); solvent ACN; 8 h; 333 K Ref. 3 - Nerol:H2O2 (1:1); Catalyst (0.3 mol %); solvent ACN; 4 h; 298 K Ref. 4 - Nerol:H2O2 (1:2); Catalyst (4.0 mol %); solvent ACN; 8 h; 333 K Ref. 5 - Nerol:H O (1:2); Catalyst (4.0 mol %); solvent ACN; 8 h; 333 K 2 2 Ref. 6 - Nerol:H O (1:1); Catalyst (3.4 mol %); solvent - ACN; 2 h; 343 K 2 2 Nerol:H O (1:2); Catalyst (4.6 mol %); solvent MeOH; 5 h; 343 K Ref. 7 - 2 2 Fig SM1. Comparison of conversion and selectivity of nerol oxidation with hydrogen peroxide over different solid catalysts Oligomers Nerol epoxide Neraldehyde Conversion 100 100 % / y 80 t 80 i v i t % c / e l n 60 60 e o i S s r d e n v Leaching 1 a 40 40 n n o Leaching 2 o i C s Normal r 20 e 20 v n o 0 C 0 0 2 4 6 8 Leaching 1 Leaching 2 Normal Time / h a Fig. SM2 Conversion and selectivity of nerol oxidation reactions with H2O2 in the presence of ZnWO4 - 2.0% Dy catalyst a Reaction conditions: nerol (1.375 mmol), H2O2 (2.750 mmol), temperature (333 K), catalyst (15 mg), CH3CN (10 mL), time (8 h) Leaching 1: Stirring 30 min (catalyst + solvent); after that, the catalyst was removed by centrifugation and the substrate and hydrogen peroxide were placed in the reaction medium; the reaction was followed for 8 h with aliquots periodically collected. Leaching 2: all components were placed in the reaction medium for 30 min under stirring; after this time, the catalyst was removed by centrifugation and the reaction proceeded normally until 8 h was completed. Oligomers Nerol epoxide Leaching 1 Neraldehyde Conversion 100 100 Leaching 2 % / Normal y t 80 i 80 v i t % c / e l n 60 60 e o i S s r d e n v 40 a 40 n n o o i C s 20 r 20 e v n o 0 C 0 0 2 4 6 8 Leaching 1 Leaching 2 Normal Time / h a Fig. SM3 Conversion and selectivity of nerol oxidation reactions with H2O2 in the presence of ZnWO4 catalyst a Reaction conditions: nerol (1.375 mmol), H2O2 (2.750 mmol), temperature (333 K), catalyst (15 mg), CH3CN (10 mL), time (8 h) Leaching 1: Stirring 30 min (catalyst + solvent); after that, the catalyst was removed by centrifugation and the substrate and hydrogen peroxide were placed in the reaction medium; the reaction was followed for 8 h with aliquots periodically collected. Leaching 2: all components were placed in the reaction medium for 30 min under stirring; after this time, the catalyst was removed by centrifugation and the reaction proceeded normally until 8 h was completed. NEROL PRODUCTS Nerol epoxide EIMS 70 eV, m/z (rel. int. %): 170 [M]+ (1), 152 (1), 137 (1), 109 (67), 95 (27), 82 (40), 69 (65), 67 (68), 55 (35), 43 (89), 41 (100). 41 100 43 O % 75 / 67 109 y 69 t i OH s n e t 50 n I 55 e Nerol epoxide v i 95 t a l 25 e R 137 152 170 0 40 60 80 100 120 140 160 180 m / z Fig. SM2 Mass spectrum of nerol epoxide1 Neraldehyde EIMS 70 eV, m/z (rel. int. %): 152 [M]+ (1), 94 (27), 84 (24), 69 (80), 53 (14), 41 (100), 39 (23). 41 100 69 % 75 / y t i O s n e t 50 n I e Neraldehyde v i t 94 84 a 39 l 25 e 53 R 152 0 40 60 80 100 120 140 160 m / z Fig. SM3 Mass spectrum of neraldehyde2,3 BORNEOL PRODUCT Camphor 95 100 O 81 % 75 / y t i s Camphor n 108 e t 50 n I 55 69 e 109 v 83 i 152 t 67 a l e 25 93 R 0 40 60 80 100 120 140 160 m / z Fig. SM4 Mass spectrum of camphor4 GERANIOL PRODUCTS Geraniol diepoxide EIMS 70 eV, m/z (rel. int. %): 186 [M]+ (1), 155 (1), 125 (9), 111 (10), 93 (7), 84 (29), 71 (30), 59 (22), 43 (100). 43 100 O OH 75 % / y t i s n O e t 50 n I e v i t 71 Geraniol diepoxide a l 84 e 59 R 25 111 93 125 155 186 0 40 60 80 100 120 140 160 180 m / z Fig. SM5 Mass spectrum of geraniol diepoxide1 Geraniol epoxide + EIMS 70 eV, m/z (rel. int. %): 152 [M−H2O] (0.7), 137 (1), 109 (57), 97 (5), 85 (7), 81 (24), 71 (18), 67 (65), 59 (11), 57 (6), 55 (40), 43 (90), 41 (100). 41 100 43 O OH 75 % 67 / y t i 109 s n e t 50 n I 55 e v i t a Geraniol epoxide l e 81 R 25 71 59 85 97 137 152 0 40 60 80 100 120 140 160 180 m / z Fig. SM6 Mass spectrum of geraniol epoxide1 Geranaldehyde EIMS 70 eV, m/z (rel. int. %): 152 [M]+ (3), 137 (7), 94 (13), 84 (24), 69 (94), 41 (100). 41 100 69 O 75 % / y t i s n e t 50 n I e v i t Geranaldehyde a l e 84 R 25 94 137 152 0 40 60 80 100 120 140 160 m / z Fig. SM7 Mass spectrum of geranaldehyde3 α-TERPINEOL PRODUCTS p-menthan-2-ol, 1,8-epoxy EIMS 70 eV, m/z (rel. int. %): 170 [M]+ (10), 126 (50), 108 (79), 71 (56), 43 (100), 41 (33). 43 OH 100 O 108 80 % / y t i 60 s 71 n 126 p-menthan-2-ol, 1,8-epoxy e t n I e 40 v i 41 t a l e R 20 170 0 40 60 80 100 120 140 160 180 m / z Fig. SM8 Mass spectrum of p-menthan-2-ol, 1,8-epoxy5 α-Terpineol epoxide EIMS 70 eV, m/z (rel. int. %): 170 [M]+ (0.1), 71 (69), 59 (60), 43 (100), 41 (26). 43 100 O 80 71 % / 59 y t i 60 s n e t n I e 40 OH v i t -terpineol epoxide a l 41 e R 20 0 40 60 80 100 120 140 160 180 m / z Fig. SM9 Mass spectrum of α-terpineol epoxide5 References used in Fig.SM1. 1. Silva M J, Andrade P H S, Ferreira S O, Vilanculo C B, Oliveira C M O (2018) Monolacunary K8SiW11O39- Catalyzed Terpenic Alcohols Oxidation with Hydrogen Peroxide. Catal Lett 148:2516-2434 2. Viana L A S, Silva G R N, Silva M J (2018) A Highly Selective Na2WO4-Catalyzed of Terpenic Alcohols by Hydrogen Peroxide. Catal Lett 148:374-386 3. Vilanculo C B, Silva M J (2020) Unraveling the role of the lacunar Na7PW11O39 catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room tempearature. New J Chem 44:2813-2820 4. Batalha D C, Ferreira S O, Silva R C, Silva M J (2020) Cesium-Exchanged Lacunar Keggin Heteropolyacid Salts: Efficient Solid Catalyst for the Green Oxidation of Terpenics Alcohols with Hydrogen Peroxide. ChemSelect 5:1976:1986 5. Batalha D C, Marins N H, Silva R C, Carreño N L V, Farjado H V, Silva M J (2020) Oxidation of terpenic alcohols with hydrogen peroxide promoted by Nb2O5 obtained by microwave-assisted hydrothermal method. Mol Catal 489:110941:110952 6. Somma, F., & Strukul, G. (2004). Oxidation of geraniol and other substituted olefins with hydrogen peroxide using mesoporous, sol–gel-made tungsten oxide–silica mixed oxide catalysts. J. Catal., 227(2):344. 7. Somma, F., Canton, P., & Strukul, G. (2005). Effect of the matrix in niobium-based aerogel catalysts for the selective oxidation of olefins with hydrogen peroxide. J. Catal., 229(2): 490..
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-