11. Spacecraft Dynamics MAE 342 2016

11. Spacecraft Dynamics MAE 342 2016

2/12/20 Spacecraft Dynamics Space System Design, MAE 342, Princeton University Robert Stengel • Angular rate dynamics • Spinning and non-spinning spacecraft • Gravity gradient satellites • Euler Angles and spacecraft attitude • Rotation matrix • Precession of spinning axisymmetric spacecraft Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Angular Momentum of a Particle • Moment of linear momentum of differential particles that make up the body – Differential mass of a particle times component of its velocity that is perpendicular to the moment arm from the center of rotation to the particle dh = (r × dmv) = (r × v m )dm = (r × (vo + ω × r))dm 2 2 1 2/12/20 Angular Momentum of an Object Integrate moment of linear momentum of differential particles over the body h = r × v + ω × r dm ∫ ( ( o )) Body = r × v dm + r × ω × r dm ∫ ( o ) ∫ ( ( )) Body Body = 0 − ∫ (r × (r × ω))dm = − ∫ (r × r)dm × ω Body Body ⎡ ⎤ ≡ − (r!r!)dmω ⎡ ⎤ ω x ∫ hx ⎢ ⎥ Body ⎢ ⎥ ω = ⎢ ω y ⎥ h = ⎢ hy ⎥ ⎢ ω ⎥ ⎢ h ⎥ ⎣⎢ z ⎦⎥ ⎣⎢ z ⎦⎥ 3 3 Angular Momentum with Respect to the Center of Mass Choose center of mass as origin about which angular momentum is calculated (= center of rotation) Use cross-product-equivalent matrix to define the inertia matrix, I h = − ∫ r! r! dm ω Body x y z ⎡ 0 −z y ⎤⎡ 0 −z y ⎤ max max max ⎢ ⎥⎢ ⎥ = − ∫ ∫ ∫ ⎢ z 0 −x ⎥⎢ z 0 −x ⎥ρ(x, y,z)dx dydz xmin ymin zmin ⎢ −y x 0 ⎥⎢ −y x 0 ⎥ ⎣ ⎦⎣ ⎦ ⎡ (y2 + z2 ) −xy −xz ⎤ ⎢ ⎥ 2 2 = ∫ ⎢ −xy (x + z ) −yz ⎥dm ω = I ω Body ⎢ 2 2 ⎥ ⎢ −xz −yz (x + y ) ⎥ 4 ⎣ ⎦ 4 2 2/12/20 Inertia Matrix 2 2 ⎡ ⎤ ⎡ (y + z ) −xy −xz ⎤ I xx −I xy −I xz ⎢ ⎥ ⎢ ⎥ 2 2 −I I −I I = ∫ ⎢ −xy (x + z ) −yz ⎥dm = ⎢ xy yy yz ⎥ Body ⎢ 2 2 ⎥ ⎢ ⎥ −xz −yz (x + y ) −I xz −I yz Izz ⎣⎢ ⎦⎥ ⎣⎢ ⎦⎥ Moments of inertia on the diagonal Products of inertia off the diagonal If products of inertia are zero, (x, y, z) are principal axes ⎡ I 0 0 ⎤ ⎢ xx ⎥ IP = ⎢ 0 I yy 0 ⎥ ⎢ 0 0 I ⎥ ⎣⎢ zz ⎦⎥ For fixed mass distribution, inertia matrix is constant in body frame of reference 5 5 Inertial-Frame Inertia Matrix is Not Constant if Body is Rotating Newton’s 2nd Law applies to rotational motion in an inertial frame Rate of change of angular momentum = applied moment (or torque), m ⎡ M ⎤ Chain Rule ⎢ x ⎥ dh d(Iω) d = = M = ⎢ M y ⎥ (Iω) dh d I dt dt = = ω + Iω! ⎢ M ⎥ dt dt dt ⎣⎢ z ⎦⎥ Inertial-frame solution for In an inertial frame angular rate d d I I ≠ 0 Iω! = M − ω dt dt −1 ⎛ d I ⎞ ω! = I ⎜ M − ω⎟ ⎝ dt ⎠ 6 6 3 2/12/20 How Do We Get Rid of dI/dt in the Angular Momentum Equation? Write the dynamic equation in a body-referenced frame § Inertia matrix is ~unchanging in a body frame § Body-axis frame is rotating § Dynamic equation must be modified to account for rotation 7 7 Expressing Vectors in Different Reference Frames • Angular momentum and rate are vectors – They can be expressed in either the inertial or body frame – The 2 frames are related by the rotation matrix (also called the direction cosine matrix) B HI : Rotation transformation from inertial frame ⇒ body frame I HB : Rotation transformation from body frame ⇒ inertial frame B I hB = HI hI hI = HBhB B I ω B = HI ω I ω I = HBω B 8 8 4 2/12/20 Euler Angles • Body attitude measured with respect to inertial frame • Three-angle orientation expressed by sequence of three orthogonal single-angle rotations Inertial ⇒ Intermediate1 ⇒ Intermediate2 ⇒ Body ψ : Yaw angle ψ : Yaw angle1 θ : Pitch angle θ : Pitch angle φ : Roll angle φ : Yaw angle2 • 24 (±12) possible sequences of single-axis rotations • Aircraft convention: 3-2-1, z positive down • Spacecraft convention: 3-1-3, z positive up 9 9 Reference Frame Rotation from Inertial to Body: Aircraft Convention (1-2-3) Yaw rotation (ψ) about zI axis ⎡ ⎤ ⎡ x ⎤ ⎡ cosψ sinψ 0 ⎤⎡ x ⎤ xI cosψ + yI sinψ ⎢ ⎥ ⎢ ⎥ 1 ⎢ y ⎥ ⎢ y ⎥ x sin y cos r = H r ⎢ ⎥ = ⎢ −sinψ cosψ 0 ⎥⎢ ⎥ = ⎢ − I ψ + I ψ ⎥ 1 I I ⎢ z ⎥ ⎢ 0 0 1 ⎥⎢ z ⎥ ⎢ z ⎥ ⎣ ⎦1 ⎣ ⎦⎣ ⎦I ⎣ I ⎦ Pitch rotation (θ) about y1 axis ⎡ x ⎤ ⎡ cosθ 0 −sinθ ⎤⎡ x ⎤ ⎢ ⎥ ⎢ ⎥ 2 2 1 2 y = ⎢ ⎥ y r = H r = ⎡H H ⎤r = H r ⎢ ⎥ ⎢ 0 1 0 ⎥⎢ ⎥ 2 1 1 ⎣ 1 I ⎦ I I I ⎢ z ⎥ ⎢ sinθ 0 cosθ ⎥⎢ z ⎥ ⎣ ⎦2 ⎣ ⎦⎣ ⎦1 Roll rotation (ϕ) about x2 axis ⎡ x ⎤ ⎡ 1 0 0 ⎤⎡ x ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ B B 2 1 B y 0 cosφ sinφ y rB = H2 r2 = ⎣⎡H2 H1 HI ⎦⎤rI = HI rI ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ z ⎥ ⎢ 0 −sinφ cosφ ⎥⎢ z ⎥ ⎣ ⎦B ⎣ ⎦2 ⎣ ⎦ 10 10 5 2/12/20 Reference Frame Rotation from Inertial to Body: Spacecraft Convention (3-1-3) Yaw rotation (ψ) about zI axis ⎡ ⎤ ⎡ x ⎤ ⎡ cosψ sinψ 0 ⎤⎡ x ⎤ xI cosψ + yI sinψ ⎢ ⎥ ⎢ ⎥ 1 ⎢ y ⎥ ⎢ y ⎥ x sin y cos r = H r ⎢ ⎥ = ⎢ −sinψ cosψ 0 ⎥⎢ ⎥ = ⎢ − I ψ + I ψ ⎥ 1 I I ⎢ z ⎥ ⎢ 0 0 1 ⎥⎢ z ⎥ ⎢ z ⎥ ⎣ ⎦1 ⎣ ⎦⎣ ⎦I ⎣ I ⎦ Pitch rotation (θ) about x1 axis ⎡ x ⎤ ⎡ 1 0 0 ⎤⎡ x ⎤ ⎢ ⎥ ⎢ ⎥ 2 2 1 2 y = ⎢ 0 cos sin ⎥ y r = H r = ⎡H H ⎤r = H r ⎢ ⎥ ⎢ θ θ ⎥⎢ ⎥ 2 1 1 ⎣ 1 I ⎦ I I I ⎢ z ⎥ ⎢ 0 −sinθ cosθ ⎥⎢ z ⎥ ⎣ ⎦2 ⎣ ⎦⎣ ⎦1 Yaw rotation (ϕ) about z2 axis ⎡ x ⎤ ⎡ cosφ sinφ 0 ⎤⎡ x ⎤ ⎢ ⎥ B B 2 1 B ⎢ y ⎥ ⎢ y ⎥ r = H r = ⎡H H H ⎤r = H r ⎢ ⎥ = ⎢ −sinφ cosφ 0 ⎥⎢ ⎥ B 2 2 ⎣ 2 1 I ⎦ I I I ⎢ z ⎥ ⎢ 0 0 1 ⎥⎢ z ⎥ ⎣ ⎦B ⎣ ⎦⎣ ⎦2 11 11 Rotation Matrix from I to B Aircraft Convention (1-2-3) B B 2 1 HI (φ,θ,ψ) = H2 (φ)H1 (θ)HI (ψ) # 1 0 0 &# &# cosψ sinψ 0 & % ( cosθ 0 −sinθ % ( 0 cos sin % ( = % φ φ (% 0 1 0 (% −sinψ cosψ 0 ( % ( % ( $ 0 −sinφ cosφ '$% sinθ 0 cosθ '($ 0 0 1 ' # cosθ cosψ cosθ sinψ −sinθ & % ( = % −cosφ sinψ +sinφ sinθ cosψ cosφ cosψ +sinφ sinθ sinψ sinφ cosθ ( % ( $ sinφ sinψ + cosφ sinθ cosψ −sinφ cosψ + cosφ sinθ sinψ cosφ cosθ ' 12 12 6 2/12/20 Rotation Matrix from I to B Spacecraft Convention (3-1-3) B B 2 1 HI (φ,θ,ψ) = H2 (φ)H1 (θ)HI (ψ) ⎡ cosφ sinφ 0 ⎤⎡ 1 0 0 ⎤⎡ cosψ sinψ 0 ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ 0 cos sin ⎥ ⎢ −sinφ cosφ 0 ⎥⎢ θ θ ⎥⎢ −sinψ cosψ 0 ⎥ ⎢ ⎥ 0 −sinθ cosθ ⎢ ⎥ ⎣ 0 0 1 ⎦⎣⎢ ⎦⎥⎣ 0 0 1 ⎦ ⎡ cosφ cosψ − sinφ cosθ sinψ cosφ sinψ + sinφ cosθ cosψ sinφ sinθ ⎤ ⎢ ⎥ = ⎢ −sinφ cosψ − cosφ cosθ sinψ −sinφ sinψ + cosφ cosθ cosψ cosφ sinθ ⎥ ⎢ sinθ sinψ −sinθ cosψ cosθ ⎥ ⎣ ⎦ 13 13 Properties of the Rotation Matrix B ⎡ ⎤ h11 h12 h13 B ⎢ ⎥ HI (φ,θ,ψ ) = ⎢ h21 h22 h23 ⎥ ⎢ ⎥ h31 h32 h33 ⎣ ⎦I B B 2 1 HI (φ,θ,ψ ) = H2 (φ)H1 (θ)HI (ψ ) B −1 B T I ⎣⎡HI (φ,θ,ψ )⎦⎤ = ⎣⎡HI (φ,θ,ψ )⎦⎤ = HB (ψ ,θ,φ) Orthonormal transformation Angles between vectors are preserved r s Lengths are preserved rI = rB ; sI = sB ∠(rI ,sI ) = ∠(rB ,sB ) = x deg 14 14 7 2/12/20 Rotation Matrix Inverse Inverse relationship: interchange sub- and superscripts B rB = HI rI B −1 I rI = (HI ) rB = HBrB Because transformation is orthonormal Inverse = transpose Rotation matrix is always non-singular I B −1 B T I 1 2 HB = (HI ) = (HI ) = H1H2HB I B B I HB HI = HI HB = I 15 15 Vector Derivative Expressed in a Rotating Frame I hI (t) = HB (t)hB (t) Effect of Chain Rule body-frame rotation ! I ! ! I hI (t) = HB (t)hB (t) + HB (t)hB (t) Rate of change expressed in body frame Alternatively h! = HI h! + ω × h = HI h! + ω" h I B B I I B B I I ⎡ 0 −ω ω ⎤ ⎢ z y ⎥ ω! = ⎢ ω z 0 −ω x ⎥ ⎢ ⎥ −ω y ω x 0 16 ⎣⎢ ⎦⎥ 16 8 2/12/20 Angular Rate Derivative in Body Frame of Reference Angular momentum change ! B ! ! B B ! hB = HI hI + HI hI = HI hI − ω B × hB = HBh! − ω" h = HBM − ω" I ω I I B B I I B B B h! M " I B = B − ω B Bω B Constant body-axis inertia matrix ! hB (t) = IBω! B (t) = MB (t) − ω" B (t)IBω B (t) Angular rate change −1 ω! B (t) = IB ⎣⎡MB (t) − ω" B (t)IBω B (t)⎦⎤ 17 17 Euler-Angle Rates and Body-Axis Rates ⎡ ⎤ ω x Body-axis angular rate ⎢ ⎥ ω = ω vector (orthogonal) B ⎢ y ⎥ ⎢ ⎥ ω z ⎣⎢ ⎦⎥B ⎡ φ ⎤ ⎡ ψ ⎤ Form a non-orthogonal ⎢ ⎥ ⎢ ⎥ or vector of Euler angles Θ = ⎢ θ ⎥ ⎢ θ ⎥ ⎢ ψ ⎥ ⎢ φ ⎥ ⎣ ⎦3−2−1 ⎣ ⎦3−1−3 ⎡ φ! ⎤ ⎡ ψ! ⎤ ⎡ ω ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ x ⎥ Euler-angle ! ! Θ = ⎢ θ ⎥ or ⎢ θ! ⎥ ≠ ⎢ ω y ⎥ rate vector ⎢ ⎥ ψ! ⎢ φ! ⎥ ⎢ ω ⎥ ⎣ ⎦3−2−1 ⎣ ⎦3−1−3 ⎢ z ⎥ ⎣ ⎦I18 18 9 2/12/20 Relationship Between (1-2-3) Euler-Angle and Body-Axis Rates • ψ˙ measured in Inertial Frame ! $ ! $ p φ ! 0 $ ! 0 $ ˙ # & # & # & • θ measured in Intermediate Frame #1 B B 2 # & # q & = I3 # 0 &+ H2 # θ &+ H2 H1 0 • φ˙ measured in Intermediate Frame #2 # & # r & "# 0 %& "# 0 %& # ψ & " % " % €€ ! p $ ! 1 0 −sinθ $! φ $ € # & # &# & B # q & = # 0 cosφ sinφ cosθ &# θ & = LI Θ # & # 0 sin cos cos &# & " r % " − φ φ θ %" ψ % Inverse transformation [(.)-1 ≠ (.)T] $ ' φ $ 1 sinφ tanθ cosφ tanθ '$ p ' & ) & )& ) I & θ ) = & 0 cosφ −sinφ )& q ) = LBωB & ψ ) & )& ) % ( % 0 sinφ secθ cosφ secθ (% r ( 19 19 Relationship Between (3-1-3) Euler-Angle and Body-Axis Rates ˙ ⎡ ⎤ • ψ measured in Inertial Frame ω x ⎡ 0 ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ 0 0 • θ˙ measured in Intermediate Frame #1 ⎢ ⎥ B ⎢ ⎥ B 2 ⎢ ⎥ ⎢ ω y ⎥ = I3 0 + H2 θ! + H2 H1 0 ˙ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ • φ measured in Intermediate Frame #2 ⎢ ⎥ ⎢ φ! ⎥ ⎢ 0 ⎥ ⎢ ψ! ⎥ ⎢ ω z ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦B €€ ⎡ ⎤ ω x ⎡ sinθ sinφ cosφ 0 ⎤⎡ ψ! ⎤ € ⎢ ⎥ ⎢ ⎥⎢ ⎥ ω ! B ! ⎢ y ⎥ = ⎢ sinθ cosφ −sinφ 0 ⎥⎢ θ ⎥ = LI Θ ⎢ ⎥ ⎢ cos 0 1 ⎥⎢ φ! ⎥ ⎢ ω z ⎥ ⎣ θ ⎦⎣ ⎦ ⎣ ⎦B Inverse transformation [(.)-1 ≠ (.)T] ⎡ ⎤ ⎡ ψ! ⎤ ⎡ sinφ cosφ 0 ⎤ ω x ⎢ ⎥ 1 ⎢ ⎥⎢ ⎥ I ⎢ θ! ⎥ = cosφ sinθ −sinφ sinθ 0 ⎢ ω y ⎥ = LBω B sinθ ⎢ ⎥ ⎢ ! ⎥ ⎢ ⎥⎢ ⎥ φ −sinφ cosθ cosφ cosθ sinθ ω z ⎣ ⎦ ⎣ ⎦⎣⎢ ⎦⎥B 20 20 10 2/12/20 (1-2-3) Euler-Angle Rates and Body-Axis Rates 21 21 Options for Avoiding the Singularity at θ = ±90° § Don’t use Euler angles as primary definition of angular attitude § Alternatives to Euler angles - Direction cosine (rotation) matrix - Quaternions (next lecture) Propagation of rotation matrix (1-2-3) (9 parameters) H I h = ω HI h B B I B B Consequently ⎡ 0 −r(t) q(t) ⎤ ⎢ ⎥ ! B B B HI (t) = −ω" B (t)HI (t) = − ⎢ r(t) 0 − p(t) ⎥ HI (t) ⎢ ⎥ ⎢ −q(t) p(t) 0(t) ⎥ ⎣ ⎦B B B HI (0) = HI (φ0 ,θ0 ,ψ 0 ) 22 22 11 2/12/20 Body-Axis Angular Rate Dynamics [(3-1-3) convention] −1 ω! B = IB [MB − ω" BIBω B ] ⎡ ω ⎤ ⎢ x ⎥ ω B = ⎢ ω y ⎥ ⎢ ⎥ ω z ⎣⎢ ⎦⎥B For principal axes ⎡ ⎤ ⎡ ⎤ ⎡ − ω t ω t / ⎤ ω!

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us