Bibliography

Bibliography

Bibliography [1] V.S. Afraimovich and L.P. Shil'nikov, Invariant tori, their break-down and stochasticity, Amer. Math. Soc. Transl, 149 (1991), 201{211, Originally published in: Methods of qualitative theory of diff. eqs., Gorky State Univ. (1983), pp. 3-26. [2] A. Agliari, G.-I. Bischi, R. Dieci, and L. Gardini, Global bifurcations of closed invariant curves in two-dimensional maps: a computer assisted study, Int. J. Bif. Chaos 15 (2005), 1285{1328. [3] E.L. Allgower and K. Georg, Numerical Continuation Methods: An Intro- duction, Springer-Verlag, Berlin, 1990. [4] V.I. Arnol'd, Loss of stability of self-induced oscillations near resonance, and versal deformations of equivariant vector fields, Funkcional. Anal. i Priloˇzen. 11 (1977), no. 2, 1{10, 95. [5] , Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New-York, 1983. [6] V.I. Arnol'd, V.S. Afraimovich, Yu.S. Il'yashenko, and L.P. Shil'nikov, Bifurcation theory, Dynamical Systems V. Encyclopaedia of Mathematical Sciences (V.I. Arnol'd, ed.), Springer-Verlag, New York, 1994. [7] D.G. Aronson, M.A. Chory, G.R. Hall, and R.P. McGehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study, Comm. Math. Phys. 83 (1982), 303{354. [8] D. Arrowsmith and C. Place, An Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 1990. [9] D.K. Arrowsmith, J.H.E. Cartwright, A.N. Lansbury, and C.M. Place, The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative system, Int. J. Bif. Chaos 3 (1993), 803{842. [10] A. Back, J. Guckenheimer, M. Myers, F. Wicklin, and P. Worfolk, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. 199 200 BIBLIOGRAPHY Soc. 39 (1992), 303{309. [11] C. Baesens, J. Guckenheimer, S. Kim, and Mackay R.S., Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos, Phys. D 49 (1991), 387{475. [12] F.S. Berezovskaya and A.I. Khibnik, On the problem of bifurcations of auto-oscillation near resonance 1 : 4,[investigation of a model equation], Academy of Sciences of the USSR Scientific Centre of Biological Research, Pushchino, 1979, In Russian, with an English summary. [13] , On the bifurcation of separatrices in the problem of stability loss of auto-oscillations near 1 : 4 resonance, J. Appl. Math. Mech. 44 (1980), 938{943, In Russian. [14] W.-J. Beyn, A. Champneys, E.J. Doedel, W. Govaerts, Yu.A. Kuznetsov, and B. Sandstede, Numerical continuation, and computation of normal forms, Handbook of Dynamical Systems (B. Fiedler, ed.), vol. 2, Elsevier Science, Amsterdam, 2002, pp. 149{219. [15] W.-J. Beyn and T. Huls,¨ Error estimates for approximating non-hyperbolic heteroclinic orbits of maps, Numer. Math. 99 (2004), no. 2, 289{323. [16] W.-J. Beyn, T. Huls,¨ J.-M. Kleinkauf, and Y. Zou, Numerical analysis of degenerate connecting orbits for maps, Int. J. Bif. Chaos 14 (2004), no. 10, 3385{3407. [17] W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homo- clinic orbits for maps, SIAM J. Numer. Anal. 34 (1997), 1207{1236. [18] W.-J. Beyn and W. Kleß, Numerical Taylor expansions of invariant man- ifolds in large dynamical systems, Numer. Math. 80 (1998), 1{38. [19] V.S. Biragov, Bifurcations in two-parameter family of conservative map- pings that are close to the H´enon map, Selecta Math. Sov. 9 (1990), 273{ 282, Originally published in: Methods of qualitative theory of diff. eqs., Gorky State Univ. (1987), pp. 10-24. [20] R.I. Bogdanov, Versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues, Funkcional Anal. i Priloˇzen. 9 (1975), 63. [21] , Bifurcations of a limit cycle of a certain family of vector fields on the plane, Trudy Sem. Petrovsk. Vyp. 2 (1976), 23{35. [22] , The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues, Trudy Sem. Petrovsk. Vyp. 2 (1976), 37{65. [23] M. Borland, L. Emery, H. Shang, and R. Soli- day, User's Guide for SDDS Toolkit Version 1.30, (http://www.aps.anl.gov/asd/oag/software.shtml), 2005. BIBLIOGRAPHY 201 [24] B.L.J. Braaksma and H.W. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 4 (1987), 115{168. [25] F. Brauer and C. Castillo-Ch´avez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Berlin, 2000. [26] H.W. Broer, M. Golubitsky, and G. Vegter, The geometry of resonance tongues: a singularity theory approach, Nonlinearity 16 (2003), 1511{ 1538. [27] H.W. Broer, G.B. Huitema, and M.B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, vol. 1645, Springer- Verlag, Berlin, 1996, Lecture Notes in Mathematics. [28] H.W. Broer, G.B. Huitema, F. Takens, and B.L.J. Braaksma, Unfold- ings and bifurcations of quasi-periodic tori, AMS, Providence, 1990, Mem. Amer. Math. Soc. 421. [29] H.W. Broer, R. Roussarie, and C. Sim´o, Invariant circles in the Bogdanov- Takens bifurcation for diffeomorphisms, Erg. Th. Dyn. Systems 16 (1996), 1147{1172. [30] H.W. Broer, C. Sim´o, and J.C. Tatjer, Towards global models near homo- clinic tangencies of dissipative diffeomorphisms, Nonlinearity 11 (1998), 667{770. [31] H.W. Broer, C. Sim´o, and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity 15 (2002), 1205{1267. [32] , The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeo- morphisms, a dynamical inventory, preprint Groningen, 2004. [33] , The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeo- morphisms, analysis of a resonance `bubble', preprint Groningen, 2004. [34] H.W. Broer, F. Takens, and F.O.O. Wagener, Integrable and non- integrable deformations of the skew Hopf bifurcation, Regular and Chaotic Dynamics 4 (1999), 17{43. [35] J.P. Carcass`es and H. Kawakami, Existence of a cusp point on a fold bifurcation curve and stability of the associated fixed point. case of an n-dimensional map, Int. J. Bif. Chaos 5 (1999), 875{894. [36] A.R. Champneys, J. H¨arterich, and B. Sandstede, A non-transverse homo- clinic orbit to a saddle-node equilibrium, Ergodic Theory Dynam. Systems 16 (1996), 431{450. [37] A. Chenciner, Bifurcations de points fixes elliptiques. I. Courbes invari- antes, Inst. Hautes Etudes Sci. Publ. Math. 61 (1985), 67{127. [38] , Bifurcations de points fixes elliptiques. II. Orbites p´eriodiques et ensembles de Cantor invariants, Invent. Math. 80 (1985), 81{106. 202 BIBLIOGRAPHY [39] , Bifurcations de points fixes elliptiques. III. Orbites p´eriodiques de `petites' p´eriodes et ´elimination r´esonnante des couples de courbes invari- antes, Inst. Hautes Etudes Sci. Publ. Math. 66 (1988), 5{91. [40] C.Q. Cheng, Hopf bifurcations in nonautonomous systems at points of resonance, Sci. China Ser. A 33 (1990), no. 2, 206{219. [41] C.Q. Cheng and Y.S. Sun, Metamorphoses of phase portraits of vector field in the case of symmetry of order 4, J. Differential Equations 95 (1992), no. 1, 130{139. [42] S.-N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994. [43] S.-N. Chow and D. Wang, Normal forms of bifurcating periodic or- bits, Multiparameter bifurcation theory (Arcata, Calif., 1985), Contemp. Math., vol. 56, Amer. Math. Soc., Providence, RI, 1986, pp. 9{18. [44] P.M. Cincotta, C.M. Giordano, and C. Sim´o, Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits, Phys. D 182 (2003), 151{178. [45] P. H. Coullet and E. A. Spiegel, Amplitude equations for systems with competing instabilities, SIAM J. Appl. Math. 43 (1983), 776{821. [46] N.V. Davydova, Old and Young. Can they coexist?, Ph.D. thesis, Univer- sity of Utrecht, Netherlands, 2004. [47] A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov, matcont: A matlab package for numerical bifurcation analysis of ODE's, ACM TOMS 29 (2003), 141{164, (http://www.matcont.ugent.be). [48] A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, H.G.E. Meijer, and B. Sautois, New features of the software matcont for bifurcation analysis of dynam- ical systems, Manuscript, 2006. [49] A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, Mestrom W., and A.M. Riet, cl matcont: A continuation toolbox in matlab, Proceedings of the 2003 ACM symposium on applied computing, Melbourne, Florida, 2003, pp. 161{166. [50] O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of In- fectious Diseases, John Wiley & Sons, Ltd., Chichester, England, 2000. [51] W. Ding, J. Xie, and Q. Sun, Interaction of Hopf and period doubling bifurcations of a vibro-impact system, J. Sound Vibr. 275 (2004), 27{45. [52] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede, and X.-J. Wang, Continuation and Bifurcation Soft- ware for Ordinary Differential Equations (with HomCont), User's Guide, (http://indy.cs.concordia.ca), 1997-2000. [53] E.J. Doedel, H.B. Keller, and J.P. Kern´evez, Numerical analysis and con- BIBLIOGRAPHY 203 trol of bifurcation problems: (II) Bifurcation in infinite dimensions, Int. J. Bif. Chaos 1 (1991), 745{772. [54] J. Edmunds, J.M. Cushing, R.F. Costantino, S.M. Henson, B. Dennis, and R.A. Desharnais, Park's Tribolium competition experiments: a non- equilibrium species coexistence hypothesis, J. Animal Ecology 72 (2003), 703{712. [55] C. Elphick, E. Tirapegui, M. Brachet, P. Coullet, and G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 32 (1987), 95{127.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us