SC+LT Physics 1 Chap 4.Pdf

SC+LT Physics 1 Chap 4.Pdf

Chapter IV Cryogenic Techniques: Generation and Measurement of Low Temperatures Chapter IV: Cryogenic Techniques Contents: 2013) - IV.1 Generation of Low Temperatures 2004 ( IV.1.1 Introduction IV.1.2 Expansion Machine Institut - IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling Meißner - IV.1.5 Summary IV.1.6 Evaporation Cooling Walther © IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling A. Marx , Marx, A. IV.1.9 Adiabatic Demagnetization and Gross IV.2 Thermometry R. IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers Chapt. IV - 2 Chapter IV: Cryogenic Techniques Literature: 1. Tieftemperaturphysik 2013) - Enss, Hunklinger 2004 ( Springer (2000) Institut - 2. Matter and Methods at Low Temperatures F. Pobell Meißner - Springer, 2nd edition (1996) Walther © 3. Experimental Low-Temperature Physics Anthony Kent A. Marx , Marx, A. American Institute of Physics (1993) and Gross 4. Cryogenic Systems R. Randall F. Barron Oxford University Press, Oxford (1985) Chapt. IV - 3 IV.1 Generation of Low Temperatures IV.1.1 Introduction 9 10 center of hottest stars 108 center of the sun, nuclear energies 7 10 6 2013) - 10 5 2004 ( 10 electronic energies, chemical bonding 4 10 Institut - surface of sun, highest boiling temperatures 103 organic life Meißner 2 - background 10 liquid air temperature 1 Walther 10 liquid 4He © in universe 0 universe 10 (2.73 K) -1 electronic magnetism A. Marx , Marx, A. 10 and -2 temperature (K) temperature 10 Gross -3 3 superfluid He - R. 10 lowest temperature -4 10 superconductivity accessible in solids -5 10 nuclear (few µK) -6 magnetism 10 lowest temperatures of condensed matter 10-7 Chapt. IV - 4 IV.1 Generation of Low Temperatures IV.1.1 Introduction 2013) - low temperature record 2004 ( for nuclear spin system: Institut - • experimental setup Meißner according to Tauno Knuuttila (2000) - Walther • lowest temperature: about 100 pK © by demagnetization of Rhodium nuclei A. Marx , Marx, A. („temperature of nuclear spins“) and PhD Thesis, Gross Helsinki University of Technology R. (Espoo, Finland) • problem: spin temperature cannot be transferred to lattice of solid Chapt. IV - 5 IV.1 Generation of Low Temperatures IV.1.1 Introduction Generation of low temperatures by using cryo-liquids: 19th century: liquefaction of various gases by pressure except for “permanent gases” (O2, H2, He) 2013) - 1877: liquefaction of O2 by thermal expansion 2004 ( (L. Cailletet, C.R. Acad. Sci. Paris 85, 1213 (1877); R. Pictet, C.R. Acad. Sci. Paris 85, 1214 (1877)) 1884: liquefaction of H2 (precooling with liquid O2) Institut - (K. Olszewski, Ann. Phys. u. Chem. 31, 58 (1887)) 1898: significant amounts of lH for physical experiments Sir James Dewar, Meißner 2 - (1842-1923) (J. Dewar, Proc. R. Inst. Gt. Br. 15, 815 (1898)) Walther 1908: liquefaction of last “permanent gas” He by Kamerlingh Onnes © (H. Kammerlingh Onnes, Leiden Commun. 105, Proc. Roy. Acad. Sci. Amsterdam 11, 168 (1908)) 1922: Kammerlingh Onnes reaches T < 1K A. Marx , Marx, A. (H. Kammerlingh Onnes, Leiden Commun. 159, Trans. Faraday Soc. 18 (1922)) and 1926: adiabatic demagnetization of electron spins in Gross R. paramagnetic salts by Debye and independently (P. Debye, Ann. Phys. 81, 1154 (1926) 1927: by Giauque Heike Kammerlingh Onnes (W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927) (1853 – 1926) since 1950th: 3He available Nobelpreis für Physik: 1913 3 He cryostat Peter J. Debye 3 4 He- He dilution refrigerator 1884 - 1966 Chapt. IV - 6 Low Temperature Technology in Germany 1861 study at Polytechnikum Zurich, teachers: Rudolf Clausius, Gustav Zeuner und Franz Reuleaux 1868 offer of chair at the Polytechnische Schule München (now TUM) 2013) - 1873 development of cooling machine allowing 2004 ( the temperature stabilization in beer Institut - brewing 21. 6. 1879 foundation of „Gesellschaft für Linde’s Meißner - Eismaschinen AG“ together with two Walther beer brewers and three other co-founders © 1892 - 1910 re-establishment of professorship A. Marx , Marx, A. 12.5.1903 and patent application: Gross R. „Lindesches Gegenstrom- verfahren“ liquefaction of oxygen (-182°C = 90 K) Carl Paul Gottfried von Linde * 11. Juni 1842 in Berndorf, Oberfranken † 16. November 1934 in Munich Chapt. IV - 7 R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2013) IV.1.1 IV.1 Introduction Generation of Low Temperatures paramagnetic refrigeration paramagnetic Year nuclear demagnetization nuclear ultra-low temperatures low temperatures Chapt . IV - 9 IV.1 Generation of Low Temperatures IV.1.1 Introduction 2013) - temperature refrigeration technique available typical record 2004 ( range since Tmin Tmin Institut - Kelvin universe 2.73 K 4He evaporation 1908 1.3 K 0.7 K Meißner - 3He evaporation 1950 0.3 K 0.25 K Walther © Millikelvin 3He-4He dilution 1965 10 mK 2 mK Pomeranchuk cooling 1965 3 mK 2 mK A. Marx , Marx, A. and electron spin demagnetization 1934 3 mK 1 mK Gross R. Microkelvin nuclear spin demagnetization 1956 50 µK 100 pK Chapt. IV - 10 IV.1 Generation of Low Temperatures IV.1.1 Introduction cooling techniques: • expansion of an ideal gas 2013) - • expansion machine 2004 ( • regenerative machine Institut - work against outside world • expansion of a real gas Meißner - • Joule Thomson cooler Walther © work against internal interactions • evaporation of a real gas: A. Marx , Marx, A. and work against internal interactions Gross • dilution cooling (3He/4He) R. work against internal interactions • adiabatic demagnetization (electronic/nuclear moments) work against magnetic ordering Chapt. IV - 11 IV.1 Generation of Low Temperatures IV.1.1 Introduction 2013) - Liquefaction of gases three useful methods: 2004 ( Institut - 1. direct liquefaction by isothermal compression Meißner 2. letting the gas perform work against external forces at the expense of - Walther its internal energy © cooling and eventual liquefaction A. Marx , Marx, A. and 3. making the gas perform work against its own internal forces by Joule- Gross R. Kelvin or Joule-Thomson expansion cooling and eventual liquefaction Chapt. IV - 12 IV.1 Generation of Low Temperatures IV.1.1 Introduction direct liquefaction of gases by isothermal compression starting temperature must be smaller than critical temperature Tc 2013) p - melting curve 2004 ( solid Institut - liquid Meißner - boiling curve pc critical point Walther © triple point gas A. Marx , Marx, A. sublimation curve and T Tc Gross R. ammonia (NH3) 406 critical O2 154.5 temperatures Tc N2 126 in K of selected H2 33.2 liquid cryogens 4He 5.2 3He 3.32 Chapt. IV - 13 IV.1 Generation of Low Temperatures IV.1.1 Introduction p solid liquid 2013) - T , p T , p Cryogenic Liquids m m b b Tc , pc 1 at 2004 ( gas Ttr , ptr Institut - Tc T Meißner - Walther @ 1 bar © A. Marx , Marx, A. and Gross R. Chapt. IV - 14 IV.1 Generation of Low Temperatures IV.1.1 Introduction direct liquefaction of gases by expansion (Joule-Thomson-Effect) starting temperature must be smaller than inversion temperature 2013) - cryogen boiling liquefaction latent heat inversion 2004 ( point [K] [kJ/I] temp. [K] Institut - oxygen 90.2 1877: Cailletet and Pictet 240 762 Meißner - nitrogen 77.3 1883: Wroblewski and 160 625 Walther Olszewski © hydrogen 20.4 1898: Dewar 30 203 A. Marx , Marx, A. 4 and Helium 4.2 1908: Onnes 2.6 43.2 Gross 3 R. Helium 3.2 0.5 - • liquid oxygen and hydrogen have potential hazards • liquid nitrogen and 4He are the most widely used cryogens • liquid 3He is very expensive Chapt. IV - 15 IV.1 Generation of Low Temperatures IV.1.1 Introduction liquefaction of gases by performance of external work 2013) - 2004 ( Institut - Meißner - gas molecules are reflected at the moving piston-surface: Walther © incoming: laboratory system: 푣푀 A. Marx , Marx, A. piston system: 푣푀 − 푣퐾 and outgoing: piston system: − 푣푀 − 푣퐾 ′ Gross laboratory system: − 푣푀 − 푣퐾 + 푣퐾 = 2푣퐾 − 푣푀 = 푣푀 R. ′ i.e.: 푣푀 = 푣푀 − 2푣퐾 molecule is slower, i.e. colder average momentum transfer per time to piston = force, force · distance = work external work at the expense of internal energy cooling Chapt. IV - 16 IV.1 Generation of Low Temperatures IV.1.1 Introduction • Carnot process: - counterclockwise: heat pump (conversion of mechanical work into heat) - clockwise: heat engine (conversion of heat into mechanical work) 2013) - • pV diagram: 2004 ( expansion cooling: adiabats p 휅 dQ = 0 (adiabatic) (푝푉 = 푐표푛푠푡, 푑푄 = 0 Q12 Institut 1 - 푐푝 휅 = > 1) 퐶푉 Meißner - heat exchange: isotherms W41 2 T1 = const (푝푉 = 푐표푛푠푡, 푑푇 = 0) Walther (isothermic) © work per cycle: 4 W23 A. Marx , Marx, A. 푊 = ∮ 푝푑푉 = 퐚퐫퐞퐚 and dQ = 0 3 T2 = const Q34 Gross • efficiency: R. V W T thermodynamic definition of temperature Q T warm • Carnot process: technologically difficult to realize better: gas circulation, compressor and expansion machine are spatially separated Chapt. IV - 17 IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine • medium: He gas Brayton method e.g. liquefaction of air: 2013) - - condensation on cold head 2004 ( - distillation in separation columns Institut N (77.4 K) cooling - 2 Ar (87.3 K) inert gas Meißner - O2 (90.2 K) welding Walther © (should not cause significant resistance • temperature reduction: for flowing gas e.g. A. Marx , Marx, A. concentric tubes) and Gross R. • efficiency: 휅 = 퐶푝/퐶푉 (= 5/3 for He) expansion from 100 bar to 1 bar results in T2 = 50 K T2 = 8 K can be reached in a 2 stage cycle Chapt. IV - 18 IV.1 Generation of Low Temperatures IV.1.1 Introduction • heat pumps: heating and refrigerating machines p - heat pump: 1 Q12 dQ = 0 2013) heat is generated by mechanical work - W 41 T = const 2004 1 - efficiency: ( 2 generated heat at T T1 Q1 Institut W - 4 23 h T = const performed work W dQ = 0 Q 3 2 Meißner 34 - V Walther © - ideal efficiency for reversible Carnot process: A. Marx , Marx, A. 1 T 1 hC 1 (increases with decreasing temperature difference T1 – T2) and C T1 T2 Gross R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    144 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us