Ballistic Atmospheric Entry

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry • Straight-line (no gravity) ballistic entry based on density and altitude • Planetary entries (at least a start) • Basic equations of planar motion © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Ballistic Entry MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry (no lift) s = distance along the flight path v, s dv D γ = g sin γ dt − − m D horizontal dv dv ds dv 1 d(v2) mg = = V = dt ds dt ds 2 ds 2 1 d(v ) D 1 2 = g sin γ Drag D ρv AcD 2 ds − − m ≡ 2 2 2 1 d(v ) ⇥v ds dh = g sin γ AcD γ 2 ds − − 2m dh ds = sin γ d(v2) ⇥v2 sin γ = g sin γ Ac 2 dh − − 2m D U N I V E R S I T Y O F Ballistic Entry MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry (2) h Exponential atmosphere ρ = ρ e− hs ⇒ o h dρ h dh ρoe− hs dh ρ dh = e− hs − = − = − ρ h ρ h ρ h o s ⇥ o s ⇥ o s ⇥ h dh = − s dρ ρ sin γ d(v2) ⇥v2 = g sin γ Ac 2 dh − − 2m D sin γ d(v2) ⇥ ⇥v2 Ac − = g sin γ D 2 d⇥ h − − 2 m s ⇥ d(v2) 2gh h v2 Ac = s + s D d⇥ ⇥ sin γ m U N I V E R S I T Y O F Ballistic Entry MARYLAND 3 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry (3) m Let β Ballistic Coefficient ≡ cDA ⇥ d(v2) h 2gh s v2 = s d⇤ − β sin ⇥ ⇤ Assume mg D to get homogeneous ODE d(v2) h d(v2) h s v2 = 0 = s d⇤ d⇤ − β sin ⇥ v2 β sin ⇥ Use v2 as integration variable v d⇥(v2) h ρ = s d⇤ v = velocity at entry v2 β sin ⇥ e ve 0 U N I V E R S I T Y O F Ballistic Entry MARYLAND 4 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry (4) Note that the effect of ignoring gravity is that there is no force perpendicular to velocity vector ⇒ constant flight path angle γ ⇒ straight line trajectories 2 v v hs⇤ ln 2 = 2 ln = ve ve β sin ⇥ v h ⇤ = exp s v 2β sin ⇥ e ⇥ kg v h ⇤ ⇤ m 3 = exp s o Check units: m v 2β sin ⇥ ⇤ kg e o ⇥ m2 ⇥ U N I V E R S I T Y O F Ballistic Entry MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design Earth Entry, γ=-60° v/ve 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 ρ/ρ o Beta=100 kg/m^3 300 1000 3000 10000 U N I V E R S I T Y O F Ballistic Entry MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design What About Peak Deceleration? dv ⇥v2 n = ⇥ dt − 2β d dv d2v To find n , set = = 0 max dt dt dt2 ⇥ d2v 1 dv d⇥ = 2⇥v + v2 = 0 dt2 −2β dt dt ⇥ d2v 1 2⇥2v3 d⇥ = + v2 = 0 dt2 −2β − 2β dt ⇥ ⇥2v3 d⇥ d⇥ = v2 ⇥2v = β β dt dt U N I V E R S I T Y O F Ballistic Entry MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design Peak Deceleration (2) From exponential atmosphere, dρ ρo h dh ρ dh = e− hs = dt −hs dt −hs dt dh From geometry, = v sin γ dt d⇥ ⇥v d⇥ = sin γ ⇥2v = β dt − hs dt ⇤v ⇤2v = β sin ⇥ − h s ⇥ Remember that this refers to the conditions at max deceleration β ⇤nmax = sin ⇥ −hs U N I V E R S I T Y O F Ballistic Entry MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Critical β for Deceleration Before Impact At surface, ρ = ρo ⇤ h β = o s Value of β at which vehicle hits crit −sin ⇥ ground⇐ at point of maximum deceleration How large is maximum deceleration? 2 2 dv ⇥v dv ⇥n v = = max dt 2β ⇒ dt 2β max 2 dv v β 1 v2 = sin ⇥ = sin γ dt 2β −h max ⇥ s ⇤ −2 hs Note that this value of v is actually vnmax U N I V E R S I T Y O F Ballistic Entry MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design Peak Deceleration (3) From page 14, v h ⇤ = exp s v 2β sin ⇥ e ⇥ vnmax hs β 1 = exp sin ⇥ = e− 2 v 2β sin ⇥ −h e ⇤ s ⇥⌅ 1 2 dv 1 vee− 2 v2 sin γ = sin γ = e dt −2 ⇥ h ⇤ − 2h e max s s Note that the velocity at which maximum deceleration occurs is always a fixed fraction of the entry velocity - it doesn’t depend on ballistic coefficient, flight path angle, or anything else! Also, the magnitude of the maximum deceleration is not a function of ballistic coefficient - it is dependent on the entry trajectory (ve and γ) but not spacecraf parameters (i.e., ballistic coefficient). U N I V E R S I T Y O F Ballistic Entry MARYLAND 10 ENAE 791 - Launch and Entry Vehicle Design Terminal Velocity Full form of ODE - d v2 h 2gh s v2 = s d⇤ ⇥ − β sin ⇥ ⇤ At terminal velocity, v = constant v ≡ T h 2gh s v2 = s −β sin ⇥ T ⇤ 2 2gβ sin ⇥ vT = − ⇤ U N I V E R S I T Y O F Ballistic Entry MARYLAND 11 ENAE 791 - Launch and Entry Vehicle Design “Cannon Ball” γ=-90° Ballistic Entry 6.75” diameter sphere, cD=0.2, VE=6000 m/sec Iron Aluminum Balsa Wood Weight 40 lb 15.6 lb 14.5 oz β 3938 1532 89 ρ 0.555 0.216 0.0125 h 5600 12,300 32,500 V 1998 355 0* V 251 156 38 *Artifact of assumption that D mg U N I V E R S I T Y O F Ballistic Entry MARYLAND 12 ENAE 791 - Launch and Entry Vehicle Design Nondimensional Ballistic Coefficient v h ⇤ ⇤ P ⇢ = exp s o =exp o v 2β sin ⇥ ⇤ 2βg sin γ ⇢ e o ⇥ ✓ o ◆ β βg Let β = (Nondimensional form of ballistic coefficient) ⌘ ⇢ohs Po Note that we are using the estimated value of P = ⇢ gh , b o o s not the actual surface pressure. v 1 ⇤ = exp v ⇤ e 2β sin ⇥ o ⇥ ⇤ohs ⇤ 1 β = βcrit = crit −sin ⇥ −sin ⇥ U N I V E R S I T Y O F Ballistic Entry MARYLAND 13 ENAE 791 - Launch and Entry Vehicle Design Entry Velocity Trends, γ=-90° Velocity Ratio 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 Density Ratio 0.7 0.8 0.9 1 β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic Entry MARYLAND 14 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry, Again s = distance along the flight path v, s dv D γ = g sin γ dt − − m D horizontal Again assuming D g, mg dv D 1 2 = Drag D ρv AcD dt −m ≡ 2 dv ρc A = D v2 dt − 2m Separating the variables, dv ⇥ = dt v2 −2β U N I V E R S I T Y O F Ballistic Entry MARYLAND 15 ENAE 791 - Launch and Entry Vehicle Design Calculating the Entry Velocity Profile dh dh = v sin γ dt = dt ⇒ v sin γ dv ⇤ dv ⇤ = dh = dh v2 −2βv sin ⇥ ⇥ v −2β sin ⇥ dv ⇤o h = e− hs dh v −2β sin ⇥ v h dv ⇤o h = e− hs dh v −2β sin ⇥ ve he h v ⇤ohs h 1 h he ln = e− hs = e− hs e− hs ve 2β sin ⇥ he 2β sin ⇥ − ⇥ ⇥ ⇤ U N I V E R S I T Y O F Ballistic Entry MARYLAND 16 ENAE 791 - Launch and Entry Vehicle Design Deriving the Entry Velocity Function he ρe Remember that e− hs = 0 ρo ≈ v 1 h = exp e− hs v e 2β sin ⇥ ⇥ We have a parametric entry equation in terms of nondimensional velocity ⇤ ratios, ballistic coefficient, and altitude. To bound the nondimensional altitude variable between 0 and 1, rewrite as v 1 h he = exp e− he hs v e 2β sin ⇥ ⇥ he and β are the⇤ only variables that relate to a specific planet hs U N I V E R S I T Y O F Ballistic Entry MARYLAND 17 ENAE 791 - Launch and Entry Vehicle Design Earth Entry, γ=-90° 1 0.9 0.8 0.7 0.6 0.5 0.4 Altitude Ratio 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Velocity Ratio β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic Entry MARYLAND 18 ENAE 791 - Launch and Entry Vehicle Design Deceleration as a Function of Altitude Start with v 1 h he 1 = exp e− he hs Let B v ≡ e 2β sin ⇥ ⇥ 2β sin ⇥ v h = exp B⇤e− hs ve ⇥ d v h d h = exp Be− hs Be− hs dt ve dt ⇤ ⌅ ⇥ ⇥ dv h B h dh = ve exp Be− hs − e− hs dt hs dt ⇥ ⇥ dh h = v sin γ = v sin γ exp Be− hs dt e U N I V E R S I T Y O F Ballistic Entry MARYLAND 19 ENAE 791 - Launch and Entry Vehicle Design Parametric Deceleration dv h B h h = ve exp Be− hs − e− hs ve sin γ exp Be− hs dt hs ⇥ ⇥ ⇥ 2 dv Bve h h = − sin γ e− hs exp 2Be− hs dt hs ⇥ ⇥ 2 dv ve h 1 h = − e− hs exp e− hs dt 2h β β sin ⇥ s ⇥ ⇤ ⌅ 2 ve dv/dt he ⇧ Let nref ⇧, ν , ⇥ ≡ hs ≡ nref ≡ hs 1 ϕ h 1 ϕ h ⇤ = − e− he exp e− he 2β β sin ⇥ ⇥ ⇤ ⌅ U N I V⇧ E R S I T Y O F ⇧ Ballistic Entry MARYLAND 20 ENAE 791 - Launch and Entry Vehicle Design Nondimensional Deceleration, γ=-90° 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Altitude Ratio h/he Altitude Ratio 0.2 0.1 0 0 0.05 0.1 0.15 0.2 Deceleratio ν β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic Entry MARYLAND 21 ENAE 791 - Launch and Entry Vehicle Design Deceleration Equations Nondimensional Form 1 ϕ h 1 ϕ h ⇤ = − e− he exp e− he 2β β sin ⇥ ⇥ ⇤ ⌅ Dimensional Form ⇧ 2 ⇧ ⇤oVe h ⇤ohs h n = − e− hs exp e− hs 2β β sin ⇥ ⇥ ⇤ ⌅ Note that these equations result in values <0 (reflecting deceleration) - graphs are absolute values of deceleration for clarity.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us