Design and Synthesis of Calcium Sensors for Photoacoustic Imaging

Design and Synthesis of Calcium Sensors for Photoacoustic Imaging

Fakultät für Medizin Lehrstuhl für Biologische Bildgebung Design and Synthesis of Calcium Sensors for Photoacoustic Imaging Sheryl Roberts Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doctor of Philosophy (Ph.D.) genehmigten Dissertation. Vorsitzende: Prof. Dr. Agnes Görlach Prüfer der Dissertation: 1. Prof. Dr. Vasilis Ntziachristos 2. Prof. Dr. Thorsten Bach Die Dissertation wurde am 23.08.2017 bei der Fakultät für Medizin der Technischen Universität München eingericht und durch die Fakultät für Medizin am 12.09.2017 angenommen. 1 Department of Medicine Chair of Biological Imaging Design and Synthesis of Calcium Sensors for Photoacoustic Imaging Sheryl Roberts Complete reprint of a thesis approved by the Department of Medicine of Technische Universität München for attaining the title of Doctor of Philosophy (Ph.D.). Chair: Prof. Dr. Agnes Görlach Examiners of dissertation: 1. Prof. Dr. Vasilis Ntziachristos 2. Prof. Dr. Thorsten Bach The dissertation was submitted to the PhD program in the Department of Medicine of the Technische Technische Universität München on the 23.08.2017 and accepted by the Technische Universität München on the 12.09.2017. 2 Sheryl Roberts Dedicated to my mother, a true warrior I still look for your face in the crowd. If only you could see me now. 3 Sheryl Roberts This doctoral dissertation was prepared at the Technical University Muenchen (Medical Faculty, TUM) and Helmholtz Zentrum Muenchen (Institute of Biological and Medical Imaging) under the guidance and supervision of Prof. Gil Westmeyer. Involved are my dissertation committee, with Prof. Thorsten Bach (TUM Organic Chemistry Department) and Prof. Vasilis Ntziachristos (TUM Biological and Medical Imaging.) 4 5 Abstract Contrast agents have provided us invaluable insights into the organisation and function of biological systems. The class of fluorescent calcium sensors has for instance uncovered remarkable details of neuronal activity. With the ultimate goal towards non-invasive neuroimaging of brain function using photoacoustic tomography, this dissertation evaluates synthetic strategies to develop calcium-responsive sensors for photoacoustic imaging. Photophysical characterisations of near-infrared metallochromic compounds responsive to divalent metals as well as a calcium-specific compounds based on a semi-cyanine scaffold are provided. These examples provide interesting starting points for the synthesis of chromic, near-infrared sensors for molecular imaging via photoacoustics. Zusammenfassung In der medizinischen Bildgebung werden Kontrastmittel zur Gewinnung wertvoller Erkenntnisse ¨uber den Aufbau und die Funktion biologischer Organismen eingesetzt. Insbesondere die Klasse der fluoreszierenden Kalziumsensoren hat bemerkenswerte Einsichten in die neuronalen Aktivit¨aten von Gehirnzellen erm¨oglicht. Diese Dissertation evaluiert synthetische Methoden zur Entwicklung kalziumreaktiver Kontrastmittel f¨ur die photoakustische Bildgebung mit dem Ziel der nichtinvasiven neuronalen Bildgebung von Gehirnaktivit¨at mittels photoakustischer Tomografie. Die photophysischen Eigenschaften einer nahinfrarot-metallochromischen Verbindung, die auf einem Semicyanin-Ger¨ust basiert und selektive Affini¨at zu Kalzium aufweist, werden vorgestellt.Die vorgestellten Beispiele bieten interessante Ansatzpunkte f¨ur die Synthese chromischer nahinfrarot-Kontrastmittel f¨ur die molekulare Bildgebung mittels photoakustischer Methoden. 6 Zusammenfassung Table of Contents Abstract........................................... 5 Zusammenfassung.................................... .. 5 Goalsandoverallobjectives . ...... 10 Structureofthedissertation. ........ 11 1 Introduction: sensors for photacoustic tomography 13 Objectives......................................... 14 1.1 Whyphotoacoustics? .............................. ... 14 1.2 Endogenous contrast agents for photoacoustic imaging . .............. 16 1.2.1 Intrinsicchromophores. ... 16 1.2.2 Geneticallyencodedchromophores . ..... 19 1.3 Exogenous contrast agents in photoacoustic imaging . ............. 20 1.3.1 Parameters to consider for ”smart” photoacoustic (PA)agentdesign . 20 1.3.2 Photophysicalproperties . .... 20 1.3.3 Biocompatability .............................. 21 1.3.4 Synthetic molecules for molecular photoacoustic imaging ......... 21 1.3.5 Nanostructured contrast agents for photoacoustic imaging ......... 27 1.4 Calciumimagingwithphotoacoustics . ........ 30 1.5 Contrastagentsforcalciumimaging . ........ 30 1.6 Functionalphotoacousticneuroimaging . .......... 32 1.7 ChemicalStrategies.............................. .... 33 2 Cyanines for photoacoustic imaging 35 Objectives......................................... 36 7 8 TABLE OF CONTENTS 2.1 Introduction.................................... .. 37 2.1.1 Strategy A: Functionalisation of cyanines and heptamethines as near infaredcalciumsensors. 43 2.1.2 Strategy B: C-C cross couplings at substitution sites ............ 48 2.1.3 Strategy C: Direct condensation reactions at C-2 positionofindoles . 51 2.2 Results......................................... 53 2.2.1 Strategy A: Fischer Indole Syntheses/Buchwald Method .......... 53 2.2.2 NearinfraredCalciumSensor . ... 58 2.2.3 StrategyB:Pd-cat.reactions . ..... 63 2.2.4 StrategyC:Directcondensationreactions . ......... 65 2.3 Discussionandconclusions. ...... 67 3 Calcium selective photoacoustic agent (CaSPA series) 71 Objectives......................................... 72 3.1 Introduction.................................... .. 73 3.2 Results......................................... 75 3.3 Discussionsandconclusions . ...... 88 3.4 Future work: Extension of CaSPA π-conjugation . .. .. .. .. .. 89 Appendices 93 A Materials and Methods 95 A.1 Generalsyntheticprocedures . ....... 96 A.2 Reverse phase high-performance liquid chromatography .............. 97 A.3 Photophysicalcharacterisations. .......... 97 A.4 NMR-Spectroscopy................................ .. 98 A.5 MassSpectroscopy ................................ .. 98 A.6 Chemicalsandsolutions . .... 99 A.7 DeterminationsofQuantumYield . .. .. .100 A.8 Quantumchemistry ................................ 100 A.9 Cellculture,seedingandloading . ........100 TABLE OF CONTENTS 9 A.10Fluorescencemicroscopy . ......101 A.11Photoacousticspectroscopy. ........102 A.12Photoacousticmicroscopy . .. .. .102 A.13 Generation and dye-loading of cardiac organoids . .............103 A.14PhotoacousticMesoscopy. .. .. .104 A.15Supportinginformation . .. .. .105 A.15.1 Synthesesofprecursors. .105 A.15.2 NMRcharacterisations . 117 B Contrast agents for photoacoustic tomography 137 B.1 Nearinfrareddyes................................ 138 B.2 Calciumsensors.................................. 148 C Calcium Selective Photoacoustic Agent, CaSPA-550 157 C.1 SupportingInformation . .158 C.1.1 Syntheses...................................171 C.1.2 NMRcharacterisations . 174 Abbreviations 181 Bibliography 185 List of Figures 203 List of Tables 209 Listofpublications ................................. .210 CV..............................................212 10 Goals and overall objectives Goals and overall objectives It was the primary goal of my dissertation work to develop a chemical platform for generating molecular sensors for photoacoustic imaging. In particular, it was my goal to design, synthesize and characterize a new sensor for the key second messenger calcium that can be read out by photoacoustic imaging in live tissue. This multi-disciplinary project will exploit the versatility of chemical reactions coupled with in- vitro and in vivo characterisation of molecules and ultimately in combination with optoacoustic imaging as a tool for studying brain activations. contrast agents (CAs) are to be synthetically modified in order to tune their affinity towards intracellular concentrations of calcium and by going deeper into biological tissue than microscopy. This work is to contribute towards the long-standing goal of non-invasive neuroimaging of brain function via photoacoustic imaging technologies. Fig. 1 shows the general workflow of my projects. Design and Strategy Characterisation of Technological compounds applications development through CHEMICAL VALIDATION: dynamic contrast agents for strategic design of 'smart' optoacoustic imaging agents. NMR ESI- LCMS S-goal orientated column chromatography purifications crystalisations syntheses of contrast fluorescent contrast agents agents PHOTOPHYSICAL STUDIES: UV/Vis & flourescent spectroscopic characterisations selectivity sensitivity biological imaging neuroscience CELL STUDIES: theranostics in-vitro characterisation in-vivo characterisation Figure 1: Broad objectives of project. The summary of project executions, chemical workflow, validation and evaluating technological applications of new probe. 11 Structure of the dissertation There are three chapters. The first chapter is mainly concern with introducing the photoacoustic technology. The goal is to introduce and highlight the latest advances in exogenous and endogenous contrast agents for molecular Photoacoustic imaging (PAI) and its considerations for in vivo molecular PAI. Its current challenges are discussed and we tackle some of the problems and demands for much needed molecular neuroimaging probes. The details of this chapter will mainly focus on the structural, chemical and photophysical characteristics of the current photoacoustic agents. The second chapter highlights the key design and syntheses towards

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    213 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us