
Excitable laser processing network node in hybrid silicon: analysis and simulation Mitchell A. Nahmias,∗ Alexander N. Tait, Bhavin J. Shastri, Thomas Ferreira de Lima, and Paul R. Prucnal Electrical Engineering Dept., Princeton University, Princeton, NJ 08544, USA. ∗[email protected] Abstract: The combination of ultrafast laser dynamics and dense on-chip multiwavelength networking could potentially address new domains of real-time signal processing that require both speed and complexity. We present a physically realistic optoelectronic simulation model of a circuit for dynamical laser neural networks and verify its behavior. We describe the physics, dynamics, and parasitics of one network node, which includes a bank of filters, a photodetector, and excitable laser. This unconventional circuit exhibits both cascadability and fan-in, critical properties for the large-scale networking of information processors based on laser excitability. In addition, it can be instantiated on a photonic integrated circuit platform and requires no off-chip optical I/O. Our proposed processing system could find use in emerging applications, including cognitive radio and low-latency control. © 2015 Optical Society of America OCIS codes: (140.3538) Lasers, pulsed; (200.4700) Optical neural systems; (250.3140) Inte- grated optoelectronic circuits; (320.7085) Ultrafast information processing. References and links 1. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nat. Commun. 2, 468 (2011). 2. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nat. Commun. 4, 1364 (2013). 3. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez,´ L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing,” Opt. Express 20, 3241–3249 (2012). 4. F. Rogister, A. Locquet, D. Pieroux, M. Sciamanna, O. Deparis, P. Megret,´ and M. Blondel, “Secure communi- cation scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection,” Opt. Lett. 26, 1486–1488 (2001). 5. C. Juang, T. Hwang, J. Juang, and W.-W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000). 6. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Experimental demonstration of reservoir computing on a silicon photonics chip,” Nat. Com- mun. 5, 3541 (2014). 7. A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, “Network of time-multiplexed optical parametric oscillators as a coherent ising machine,” Nat. Photonics 8, 937–942 (2014). 8. B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215, 367–379 (2003). 9. J. L. A. Dubbeldam, B. Krauskopf, and D. Lenstra, “Excitability and coherence resonance in lasers with saturable absorber,” Phys. Rev. E 60, 6580–6588 (1999). 10. M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection- locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013). #246538 Received 22 Jul 2015; revised 15 Sep 2015; accepted 22 Sep 2015; published 2 Oct 2015 © 2015 OSA 5 Oct 2015 | Vol. 23, No. 20 | DOI:10.1364/OE.23.026800 | OPTICS EXPRESS 26800 11. S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to z2-symmetry,” Phys. Lett. A 374, 739–743 (2010). 12. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19, 1–12 (2013). 13. M. A. Nahmias, A. N. Tait, B. J. Shastri, and P. R. Prucnal, “An evanescent hybrid silicon laser neuron,” in “Photonics Conference (IPC)” (IEEE, 2013), pp. 93–94. 14. A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: An integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014). 15. M. A. Nahmias, A. N. Tait, B. J. Shastri, , and P. R. Prucnal, “A receiver-less link for excitable laser neurons: Design and simulation,” in Summer Topicals (IEEE/OSA, 2015), pp. 99–100 (2015). 16. A. W. Fang, H. Park, Y.-h. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10, 28–35 (2007). 17. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014). 18. K. Boahen, “Point-to-point connectivity between neuromorphic chips using address events,” IEEE Trans. Circ. Syst. 47, 416–434 (2000). 19. J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural networks,” in IEEE International Joint Conference on Neural Networks (IJCNN, 2008), pp. 431–438. 20. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). 21. T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571–5581 (2015). 22. F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014). 23. T. V. Vaerenbergh, K. Alexander, J. Dambre, and P. Bienstman, “Excitation transfer between optically injected microdisk lasers,” Opt. Express 21, 28922–28932 (2013). 24. W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84, 036209 (2011). 25. B. Romeira, J. Javaloyes, C. N. Ironside, J. M. L. Figueiredo, S. Balle, and O. Piro, “Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors,” Opt. Express 21, 20931–20940 (2013). 26. B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Dynamical laser spike processing,” arXiv:1507.06713 (2015). 27. J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985). 28. A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in Nanophotonic Information Physics, , M. Naruse, ed. (Springer Berlin Heidelberg, 2014), pp. 183–222. 29. A. Fang, M. Sysak, B. Koch, R. Jones, E. Lively, Y. hao Kuo, D. Liang, O. Raday, and J. Bowers, “Single- wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009). 30. A. Tait, M. Nahmias, T. Ferreira de Lima, B. Shastri, A. Wu, E. Zhou, E. Blow, and P. Prucnal, “Continuous control of microring weight banks,” in “Proc. IEEE Photonics Conf. (IPC),” (IEEE, 2015). 31. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid algainas-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007). 32. K. Preston, N. Sherwood-Droz, J. Levy, and M. Lipson, “Performance guidelines for wdm interconnects based on silicon microring resonators,” in “2011 Conference on Lasers and Electro-Optics (CLEO)” (OSA, 2011), pp. 1–2. 33. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010). 34. C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014). 35. A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, “Kinetic models of synaptic transmission,” Methods Neuro. Modeling 2, 1–25 (1998). 36. W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks 10, 1659 – 1671 (1997). 37. S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, “Entropy and information in neural spike trains,” Phys. Rev. Lett. 80, 197–200 (1998). 38. B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “Simpel: Circuit model for photonic spike processing laser neurons,” Opt. Express. 23, 8029–0844 (2015). 39. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010). 40. S. Le Beux, J. Trajkovic, I. O’Connor, G. Nicolescu, G. Bois, and P. Paulin, “Optical ring network-on-chip #246538 Received 22 Jul 2015; revised 15 Sep 2015; accepted 22 Sep 2015; published 2 Oct 2015 © 2015 OSA 5 Oct 2015 | Vol. 23, No. 20 | DOI:10.1364/OE.23.026800 | OPTICS EXPRESS 26801 (ORNoC): Architecture and design methodology,” in “Design, Automation Test in Europe Conference Exhibition (DATE), 2011,” (2011), pp. 1–6. 41. D. G. Feitelson, Optical Computing: A Survey for Computer Scientists (MIT Press, USA, 1988). 1. Introduction Recently, there has been a surge of interest in the hybridization of photonic and electronic physics to achieve unique processing capabilities. In this context, there has been significant re- search in using laser dynamics for both information processing [1–3] and communication [4,5]. Multiplexing in optical networks have also been exploited for similar gains in performance [6, 7].
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages14 Page
-
File Size-