
Image and Video Coding II Thomas Wiegand Technische Universität Berlin Introduction bitstream encoder decoder Motivation Motivation for Image and Video Coding Application of Image and Video Coding Efficient transmission or storage of images and videos Use less throughput for given data Transmit more data for given throughput Image and Video Coding: Enabling Technology Enables new applications Makes applications economically feasible Examples Distribution of digital images Storage of images and videos Digitial television (DVB-T, DVB-T2, DVB-S, DVB-S2) Internet video streaming (YouTube, Netflix, Amazon, ...) T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 2 / 23 Motivation Practical Video Coding Examples Image Storage & Distribution Raw camera formats, JPEG, JPEG-2000, JPEG-XR, H.265 | HEVC Digital Television Terrestrial: MPEG-2 (SD, DVB-T), H.265 | HEVC (HD, DVT-T2) Satellite: H.264 | AVC (HD, DVB-S), H.265 | HEVC (UHD, DVB-S2) Video Storage on Optical Discs DVD-Video (MPEG-2) Blu-ray (MPEG-2, H.264 | AVC, VC-1) Blu-ray 3D (H.264 | AVC), Ultra HD Blu-ray (H.265 | HEVC) Video Streaming YouTube, Netflix, Amazon, other media portals H.264 | AVC, VP9, H.265 | HEVC T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 3 / 23 Motivation Types of Image and Video Compression Lossless Compression Invertible / reversible Original input data can be completely recovered Examples: PNG, JPEG-LS for images H.264 | AVC Lossless for video Lossy Compression Not invertible Only approximation of original input data can be recovered Achieves much higher compression ratios Dominant form of image and video compression Examples: JPEG, JPEG-2000 for images MPEG-2, H.264 | AVC, H.265 | HEVC for video T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 4 / 23 Source Data Sampling and Quantization Source Data Analog Signals Continuous-time/space and continuous-amplitude signals Typically resulting from physical measurements Most signals in reality (audio and visual signals) Digital Signals Discrete-time/space and discrete-amplitude signals Often generated from analog signal Sometimes directly measured (typical for image & video signals) Input Data for Image and Video Coding Require digital signals Need to be stored and processed with a computer Compression methods are computer programs T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 5 / 23 Source Data Sampling and Quantization Analog-to-Digital Conversion Sampling Maps continuous-time/space signal into discrete-time/space signal Quantization Maps continuous-amplitude signal into discrete-amplitude signal Simplest case: Rounding T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 6 / 23 Source Data Sampling and Quantization Impact of Sampling (Spatial Resolution) 400×300 samples 200×150 samples 100×75 samples 50×38 samples T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 7 / 23 Source Data Sampling and Quantization Impact of Quantization (Bit Depth) 8 bits per component 4 bits per component 3 bits per component 2 bits per component T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 8 / 23 Source Data Sampling and Quantization Raw Images and Videos Single-Component Image x Matrix of integer samples s[x; y] Characterized by y Number of samples in horizontal and vertical direction W ×H Sample bit depth B Color Images Three color components (typically RGB or YCbCr) Additionally characterized by color sampling format Videos Sequence of images Additionally characterized by frame rate T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 9 / 23 Source Data Sampling and Quantization Color Sampling Formats RGB YCbCr 4:4:4 YCbCr 4:2:2 YCbCr 4:2:0 most common format T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 10 / 23 Source Data Sampling and Quantization Raw Data Rate Raw Data Rate Bit rate R of raw data format R = (samples per time unit) · (bit depth per sample) (1) Example: Full High Definition (HD) Video 1920×1080 luma samples, 50 frames per second (Europe) 4:2:0 chroma format (chroma components with 1/4 luma resolution) 8 bits per sample raw data rate = 50 Hz · 1920 · 1080 · (1 + 2=4) · 8 bits ≈ 1:24 Gbit/s Example: Ultra High Defintion (UHD) Video 3840×2160 luma samples, 60 frames per second (USA, Japan) 4:2:0 chroma format, 10 bits per sample raw data rate = 60 Hz · 3840 · 2160 · (1 + 2=4) · 10 bits ≈ 7:5 Gbit/s T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 11 / 23 The Image & Video Coding Problem Typical Video Communication Scenario pre- capture processing video raw input encoder video samples encoded bitstream transmission channel (can be replaced by storage) bitstream channel no transmission errors channel demodulator channel modulator decoder encoder received bitstream display and perception video decoder raw output post- video samples processing T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 12 / 23 The Image & Video Coding Problem Typical Video Communication Scenario pre- capture processing video raw input encoder video samples encoded bitstream transmission channel (can be replaced by storage) bitstream channel no transmission errors channel demodulator channel modulator decoder encoder received bitstream display and perception video decoder raw output post- video samples processing T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 12 / 23 The Image & Video Coding Problem Typical Video Communication Scenario pre- capture processing video raw input encoder video samples encoded bitstream transmission channel (can be replaced by storage) bitstream channel no transmission errors channel demodulator channel modulator decoder encoder received bitstream display and perception video decoder raw output post- video samples processing T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 12 / 23 The Image & Video Coding Problem Application Examples HD movie UHD broadcast on Blu-ray Disc over DVB-S2 1920×1080 luma samples 3840×2160 luma samples raw video format 4:2:0 chroma format 4:2:0 chroma format 8 bits per sample 10 bits per sample 24 frames per second 60 frames per second raw data rate ca. 600 Mbit/s ca. 7.5 Gbit/s channel bit rate 36 Mbit/s (read speed) 58 Mbit/s (8PSK 2/3) video bit rate ca. 20 Mbit/s ca. 25 Mbit/s required compression ca. 30:1 ca. 300:1 T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 13 / 23 The Image & Video Coding Problem The Basic Image & Video Coding Problem Basic Image & Video Coding Problem Two equivalent formulations: Representing image / video data with highest fidelity possible within an available bit rate and Representing image / video data using lowest bit rate possible while maintaining a specified reproduction quality Image / Video Codec Codec: System of encoder and decoder bitstream encoder decoder T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 14 / 23 The Image & Video Coding Problem Practical Video Coding Problem Characteristics of Video Codecs / Video Communication Bit rate: Throughput of the communication channel Quality: Fidelity of the reconstructed signal Delay: Start-up latency, end-to-end delay Complexity: Computation, memory, memory access Practical Video Coding Problem Given a maximum allowed complexity and a maximum delay, achieve an optimal trade-off between bit rate and reconstruction quality for the transmission problem in the targeted application In this course: Will concentrate on source codec Ignore aspects of transmission channel (e.g., transmission errors) T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 15 / 23 The Image & Video Coding Problem Basic Design and Principles of Hybrid Video Coding (see other set of slides) Block-based Image Coding Transform of sample blocks Scalar quantization Entropy coding of quantization indexes In modern codecs: Intra-picture prediction Hybrid Video Coding Motion-compensated prediction using already coded picture Transform coding of prediction erro signals Typically: Block-based decision between intra-and inter-picture prediction Basic principles are used in all major video coding standards: H.261, MPEG-2 Video, H.263, MPEG-4 Visual, H.264/AVC, H.265/HEVC New project: Versatile Video Coding (VVC) started April 2018 T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 16 / 23 Coding Efficiency Image Compression Example OriginalLosslessLossy Compressed: Compressed:Image (1024 JPEG× GZIPPNG678 image(Quality points, 95)75)50)25)1) 945 KB)67.0346.5012.033.181.941.110.24 % % 100 % T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 17 / 23 Coding Efficiency Image Compression Example OriginalLosslessLossy Compressed: Compressed:Image (1024 JPEG× GZIPPNG678 image(Quality points, 95)75)50)25)1) 945 KB)67.0346.5012.033.181.941.110.24 % % 100 % T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 17 / 23 Coding Efficiency Image Compression Example OriginalLosslessLossy Compressed: Compressed:Image (1024 JPEG× GZIPPNG678 image(Quality points, 95)75)50)25)1) 945 KB)67.0346.5012.033.181.941.110.24 % % 100 % T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 17 / 23 Coding Efficiency Image Compression Example OriginalLosslessLossy Compressed: Compressed:Image (1024 JPEG× GZIPPNG678 image(Quality points, 95)75)50)25)1) 945 KB)67.0346.5012.033.181.941.110.24 % % 100 % T. Wiegand (TU Berlin) — Image and Video Coding: Introduction 17 / 23 Coding Efficiency Image Compression Example OriginalLosslessLossy Compressed: Compressed:Image (1024 JPEG× GZIPPNG678 image(Quality points, 95)75)50)25)1) 945 KB)67.0346.5012.033.181.941.110.24
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages34 Page
-
File Size-