Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies Nadia Sukusu Nielsena, Ebbe Toftgaard Poulsena, Marie V. Lukassenb, Connie Chao Shernc,d, Emilie Hage Mogensena, Christian E. Weberskova, Larry DeDionisiod, Leif Schausere, Tara C. B. Moorec,d, Daniel E. Otzena,f, Jesper Hjortdalg, Jan J. Enghilda,* a Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark b Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands c Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK d Avellino Labs USA, Menlo Park, USA e QIAGEN Aarhus A/S, Aarhus, Denmark f Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark g Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark * Corresponding author. Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, Aarhus, Denmark. E-mail: [email protected] Author contributions (%) The percentage of work contributed by each author in the production of the manuscript is as follows: NSN 25%, ETP 10%, MVL 10%, CCS 5%, EHM 2%, CEW 2%, LD 2%, LS 4%, TCBM 5%, DEO 10%, JH 10%, and JJE 15%. 1 ABSTRACT Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix protein, is the second most abundant protein in the corneal stroma. In this review, we summarize the current knowledge concerning the expression, molecular structure, binding partners, and functions of human TGFBIp. To date, 74 mutations in the transforming growth factor-β-induced gene (TGFBI) are associated with amyloid and amorphous protein deposition in TGFBI-linked corneal dystrophies. We discuss the current understanding of the biochemical mechanisms of TGFBI-linked corneal dystrophies and propose that mutations leading to granular corneal dystrophy (GCD) decrease the solubility of TGFBIp and affect the interactions between TGFBIp and components of the corneal stroma, whereas mutations associated with lattice corneal dystrophy (LCD) lead to a destabilization of the protein that disrupts proteolytic turnover, especially by the serine protease HtrA1. Future research should focus on TGFBIp function in the cornea, confirmation of the biochemical mechanisms in vivo, and the development of disease models. Future therapies for TGFBI-linked corneal dystrophies might include topical agents that regulate protein aggregation or gene therapy that targets the mutant allele by CRISPR/Cas9 technology. Keywords: human cornea, corneal dystrophies, protein aggregation, TGFBI gene, TGFBIp, CRISPR/Cas9 Abbreviations: Cas9, CRISPR-associated protein 9; CRISPR, clustered regularly interspaced short palindromic repeats; CROPT, cysteine-rich domain of periostin and TGFBIp; DALK, deep anterior lamellar keratoplasty; ECM, extracellular matrix; FAS1, fasciclin 1; GAG, glycosaminoglycan; GCD1, granular corneal dystrophy type 1; GCD2, granular corneal dystrophy type 2; HtrA1, high-temperature requirement A1; LASIK, laser-assisted in situ keratomileusis; LCD1, lattice corneal dystrophy type 1; PAM, protospacer adjacent motif; PK, penetrating keratoplasty; PTK, phototherapeutic keratectomy, PTM, posttranslational modification; RBCD, Reis-Bücklers corneal dystrophy; SALK, superficial anterior lamellar keratoplasty; SAP, serum amyloid P; SNP, single nucleotide polymorphism; TBCD, Thiel-Behnke corneal dystrophy; TGFBI, transforming growth factor-β-induced gene; TGFBIp, transforming growth factor-β-induced protein 2 Contents 1. TGFBIp ...................................................................................................................................................................... 1.1. Expression of TGFBIp .......................................................................................................................................... 1.1.1. TGFBIp is widely expressed in human tissues ............................................................................................. 1.1.2. Corneal TGFBIp expression .......................................................................................................................... 1.2. Structural organization of TGFBIp ..................................................................................................................... 1.2.1. Primary sequence of TGFBIp ...................................................................................................................... 1.2.2. Secondary and tertiary structure of TGFBIp ............................................................................................... 1.2.3. Quaternary structure of TGFBIp ................................................................................................................. 1.2.4. What can be learned from the structure of periostin? .............................................................................. 1.3. Protein interactions of TGFBIp .......................................................................................................................... 1.3.1. Integrins ..................................................................................................................................................... 1.3.2. Extracellular matrix proteins ...................................................................................................................... 1.3.3. Collagens .................................................................................................................................................... 1.4. Physiological function of TGFBIp ........................................................................................................................ 1.5. TGFBIp in diseases ............................................................................................................................................. 1.5.1. Roles in cancer ............................................................................................................................................ 1.5.2. Diseases of the cornea ............................................................................................................................... 2. TGFBI-linked corneal dystrophies ............................................................................................................................. 2.1. Definition and classification .............................................................................................................................. 2.2. Socioeconomic burden and quality of life ......................................................................................................... 2.2.1. Symptoms ................................................................................................................................................... 2.2.2. Epidemiology .............................................................................................................................................. 2.2.3. Genetic testing before vision correction .................................................................................................... 2.3. The R124 and R555 hotspots are highly mutable .............................................................................................. 3. Biochemical mechanisms of TGFBI-linked corneal dystrophies ............................................................................... 3.1. Proteomic profiling of deposits ......................................................................................................................... 3.1.1. Protein profiles of GCD deposits ................................................................................................................ 3.1.2. Protein profiles of LCD deposits ................................................................................................................. 3.2. Proteolytic processing ....................................................................................................................................... 3.2.1. Tissue-specific processing of TGFBIp .......................................................................................................... 3.2.2. HtrA1 proteolysis in LCD ............................................................................................................................. 3.3. The FAS1-4 domain mimics many properties of full-length TGFBIp, making it an excellent model system ..... 3 3.4. A comprehensive mutagenic and bioinformatics study highlights fundamental differences between LCD and GCD mutants ............................................................................................................................................................. 3.5. Impact of glycosaminoglycans on fibrillation mechanisms ............................................................................... 3.6. Proposed mechanisms of action in TGFBI-linked corneal dystrophies ............................................................... 4. Treatment strategies ................................................................................................................................................ 4.1. Current treatment options ................................................................................................................................ 4.1.1. Keratectomy ..............................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages59 Page
-
File Size-