U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Fiscal Year 2017: Third Quarter Progress Report Advanced Battery Materials Research (BMR) Program Released September 2017 for the period of April – June 2017 Approved by Tien Q. Duong, Advanced Battery Materials Research Program Manager Vehicle Technologies Office, Energy Efficiency and Renewable Energy Table of Contents TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ...................................................xv Task 1 – Advanced Electrode Architectures .............................................................................................................1 Task 1.1 – Higher Energy Density via Inactive Components and Processing Conditions (Vincent Battaglia, Lawrence Berkeley National Laboratory) ............................................................... 2 Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries (Yi Cui, Stanford University) ..................................................................................................................4 Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes (Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7 Task 2 – Silicon Anode Research ...............................................................................................................................9 Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes (Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................10 Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries (Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta, University of Pittsburgh) ..................................................................................................................... 13 Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................16 Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda, Oak Ridge National Laboratory)......................................................................................................... 17 Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................20 Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng, Pacific Northwest National Laboratory) ...............................................................................................23 Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and Jianming Bai, Brookhaven National Laboratory) ................................................................................ 26 Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ................................................................................... 29 Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff, Lawrence Berkeley National Laboratory) ........................................................................................... 32 Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley National Laboratory) ......................................................................................................................... 35 Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 38 BMR Quarterly Report i FY 2017 ‒ Q3 (v. 12 Sept 2017) Table of Contents Task 4 – Electrolytes ..................................................................................................................................................41 Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43 Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 45 Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) ................................................................................................................................... 48 Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 51 Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 54 Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57 Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 59 Task 5 – Diagnostics ..................................................................................................................................................62 Task 5.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 63 Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) .......................................................................................................................... 66 Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 69 Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge).................................................................................................................... 72 Task 5.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode- Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California – San Diego) ........................................................................ 75 Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky)......................................................................... 78 Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 82 Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 85 BMR Quarterly Report ii FY 2017 ‒ Q3 (v. 12 Sept 2017) Table of Contents Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 88 Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles (Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................89 Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................91 Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee, Texas A&M University)........................................................................................................................94 Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 97 Task 6.5 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) ........................................................................................................................................ 100 Task 6.6 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ..........................................................................................103 Task 6.7 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages200 Page
-
File Size-