Progress Report Advanced Battery Materials Research (BMR) Program

Progress Report Advanced Battery Materials Research (BMR) Program

U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Fiscal Year 2017: Third Quarter Progress Report Advanced Battery Materials Research (BMR) Program Released September 2017 for the period of April – June 2017 Approved by Tien Q. Duong, Advanced Battery Materials Research Program Manager Vehicle Technologies Office, Energy Efficiency and Renewable Energy Table of Contents TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ...................................................xv Task 1 – Advanced Electrode Architectures .............................................................................................................1 Task 1.1 – Higher Energy Density via Inactive Components and Processing Conditions (Vincent Battaglia, Lawrence Berkeley National Laboratory) ............................................................... 2 Task 1.2 – Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries (Yi Cui, Stanford University) ..................................................................................................................4 Task 1.3 – Electrode Architecture-Assembly of Battery Materials and Electrodes (Karim Zaghib, Hydro–Quebec) ........................................................................................................... 7 Task 2 – Silicon Anode Research ...............................................................................................................................9 Task 2.1 – High-Capacity and Long Cycle Life Silicon-Carbon Composite Materials and Electrodes (Gao Liu, Lawrence Berkeley National Laboratory) ............................................................................10 Task 2.2 – Stable Operation of Silicon-Based Anode for Lithium-Ion Batteries (Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta, University of Pittsburgh) ..................................................................................................................... 13 Task 3 – High-Energy-Density Cathodes for Advanced Lithium-Ion Batteries .....................................................16 Task 3.1 – Studies on High-Capacity Cathodes for Advanced Lithium-Ion Systems (Jagjit Nanda, Oak Ridge National Laboratory)......................................................................................................... 17 Task 3.2 – High-Energy-Density Lithium Battery (Stanley Whittingham, SUNY Binghamton) ..............................20 Task 3.3 – Development of High-Energy Cathode Materials (Ji-Guang Zhang and Jianming Zheng, Pacific Northwest National Laboratory) ...............................................................................................23 Task 3.4 – In Situ Solvothermal Synthesis of Novel High-Capacity Cathodes (Feng Wang and Jianming Bai, Brookhaven National Laboratory) ................................................................................ 26 Task 3.5 – Novel Cathode Materials and Processing Methods (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ................................................................................... 29 Task 3.6 – Advanced Cathode Materials for High-Energy Lithium-Ion Batteries (Marca Doeff, Lawrence Berkeley National Laboratory) ........................................................................................... 32 Task 3.7 – Discovery of High-Energy Lithium-Ion Battery Materials (Wei Tong, Lawrence Berkeley National Laboratory) ......................................................................................................................... 35 Task 3.8 – Exploiting Cobalt and Nickel Spinels in Structurally Integrated Composite Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 38 BMR Quarterly Report i FY 2017 ‒ Q3 (v. 12 Sept 2017) Table of Contents Task 4 – Electrolytes ..................................................................................................................................................41 Task 4.1 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine, Larry A. Curtiss, and Nenad Markovic, Argonne National Laboratory) ....................... 43 Task 4.2 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom and Ron Hendershot, Daikin) .................................................................................... 45 Task 4.3 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) ................................................................................................................................... 48 Task 4.4 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ............................... 51 Task 4.5 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ......................................................................... 54 Task 4.6 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ............................................... 57 Task 4.7 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) ........................................................................ 59 Task 5 – Diagnostics ..................................................................................................................................................62 Task 5.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) ................................................................. 63 Task 5.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) .......................................................................................................................... 66 Task 5.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) ............................................................................ 69 Task 5.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge).................................................................................................................... 72 Task 5.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode- Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California – San Diego) ........................................................................ 75 Task 5.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky)......................................................................... 78 Task 5.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) ................................................................ 82 Task 5.8 – Characterization and Computational Modeling of Structurally Integrated Electrodes (Michael M. Thackeray and Jason R. Croy, Argonne National Laboratory) ....................................... 85 BMR Quarterly Report ii FY 2017 ‒ Q3 (v. 12 Sept 2017) Table of Contents Task 6 – Modeling Advanced Electrode Materials ................................................................................................. 88 Task 6.1 – Predicting and Understanding Novel Electrode Materials from First Principles (Kristin Persson, Lawrence Berkeley National Laboratory) .................................................................89 Task 6.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) .........................................................91 Task 6.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena, Jorge Seminario, and Partha Mukherjee, Texas A&M University)........................................................................................................................94 Task 6.4 – First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anode (Perla Balbuena, Texas A&M University) .................................................................... 97 Task 6.5 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) ........................................................................................................................................ 100 Task 6.6 – First Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ..........................................................................................103 Task 6.7 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    200 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us