Character Theory of Finite Groups NZ Mathematics Research Institute Summer Workshop Day 4: the Mckay Correspondence

Character Theory of Finite Groups NZ Mathematics Research Institute Summer Workshop Day 4: the Mckay Correspondence

1/18 Character Theory of Finite Groups NZ Mathematics Research Institute Summer Workshop Day 4: The McKay Correspondence Don Taylor The University of Sydney Nelson, 7–13 January 2018 2/18 Polyhedral groups These are the cyclic groups, the dihedral groups and the rotation groups of the Platonic solids. We shall compute their character tables. But first, some isomorphisms. The rotation group of a regular tetrahedron is isomorphic to Alt(4) — acting on the four faces of the tetrahedron. The rotation group of a cube (or its dual, the octahedron) is isomorphic to Sym(4) — acting on the four lines through antipodal vertices. The rotation group of a regular icosahedron (or its dual, the dodecahedron) is isomorphic to Alt(5) — acting on the five cubes inscribed in the dodecahedron. 3/18 Presentations The polyhedral groups have presentations of the form ((a,b,c )) r,s,t r a sb t c r st 1 . Æ h j Æ Æ Æ Æ i 1 1 1 The groups are finite if and only if 1, in which case its a Å b Å c È .µ 1 1 1 ¶ order is 2 1 . a Å b Å c ¡ I ((1,n,n )) the cyclic group of order n I ((2,2,n )) the dihedral group of order 2n I ((2,3,3)) the tetrahedral group, of order 12 I ((2,3,4)) the octahedral group, of order 24 I ((2,3,5)) the icosahedral group, of order 60 4/18 The tetrahedral group Alt(4) r s t Class 1 (12)(34) (123) (143) Size 1344 Order 1233 Â1 1111 2 Â2 11 !! 2 Â3 11 ! !  3 100 4 ¡ where !3 1. Æ If r (12)(34), s (123) and t (143), then r 2 s3 t 3 r st 1. Æ Æ Æ Æ Æ Æ Æ 5/18 The octahedral group Sym(4) Class 1 t 2 rst Size 13686 Order 12234 Â1 11111  11 11 1 2 ¡ ¡  220 10 3 ¡  3 1 101 4 ¡ ¡  3 110 1 5 ¡ ¡ r (12), s (134), t (1432), t 2 (13)(24) Æ Æ Æ Æ 6/18 The icosahedral group Alt(5) Class 1 rstt 2 Size 1 15 20 12 12 Order 12355 Â1 11111  3 10 (1 p5)/2 (1 p5)/2 2 ¡ Å ¡  3 10 (1 p5)/2 (1 p5)/2 3 ¡ ¡ Å Â 401 1 1 4 ¡ ¡  51 100 5 ¡ r (12)(34), s (254), t (12345), t 2 (13524) Æ Æ Æ Æ 7/18 The binary polyhedral groups These are the finite subgroups of SU(2), which is also the group of quaternions of norm 1. The group SU(2) is a double cover of SO(3) and the binary polyhedral groups are the inverse images of the polyhedral groups. They have presentations of the form a,b,c r,s,t r a sb t c r st . hh ii Æ h j Æ Æ Æ i I — the cyclic group of order 2n I 2,2,n the binary dihedral group of order 4n hh ii I 2,3,3 the binary tetrahedral group, of order 24 hh ii I 2,3,4 the binary octahedral group, of order 48 hh ii I 2,3,5 the binary icosahedral group, of order 120 hh ii In all cases z r st is a central element of order 2. Æ 8/18 The quaternion group Q8 The quaternion group is the binary dihedral group 2,2,2 r,s,t r 2 s2 t 2 r st hh ii Æ h j Æ Æ Æ i Class 1 zrst Size 11222 Order 12444 Â1 11111  111 1 1 2 ¡ ¡  11 11 1 3 ¡ ¡  11 1 11 4 ¡ ¡  2 2000 ! 5 ¡ 9/18 The McKay graphs The characters of G are Â1, Â2,..., Âr . Given any character  let ¡(Â) be the graph with r vertices and mi j directed edges from the i th to the j th vertex, where r X ÂÂi mi j Âj . Æ j 1 Æ Taking G to be the quaternion group and  the character of degree 2, we find that the graph is 1 2 1 1 1 where the vertices are labelled with the degrees of the characters. 10/18 The binary tetrahedral group SL(2,3) ' Class 1 zs 2 t 2 rst Size 1144644 Order 1233466 Â1 1111111 2 2 Â2 11 ! ! 1 !! 2 2 Â3 11 !! 1 ! !  2 2 1 1011 ! 4 ¡ ¡ ¡  2 2 !2 ! 0 !2 ! 5 ¡ ¡ ¡  2 2 ! !2 0 !2 ! 6 ¡ ¡ ¡  3300 100 7 ¡ µ11 ¶ µ 1 1¶ µ 01 ¶ In SL(2,3) we have r , s ¡ ¡ , t $ 1 1 $ 0 1 $ 11 ¡ ¡ ¡ The homomorphism onto Alt(4) is given by r (12)(34), s (123), t (143). ! ! ! 11/18 The graph of the binary tetrahedral group Let’s play the same game with SL(2,3), where  is the real character of degree 2, ¡(Â) is the graph with 7 vertices and there are mi j directed edges from the i th to the j th vertex, where 7 X ÂÂi mi j Âj . Æ j 1 Æ 1 2 1 2 3 2 1 12/18 The binary octahedral group Class 1 z szt 2 rst tz Size 1186 12866 Order 12344688 Â1 11111111  1111 11 1 1 2 ¡ ¡ ¡  22 120 100 3 ¡ ¡  2 2 1001 p2 p2 ! 4 ¡ ¡ ¡  2 2 1001 p2 p2 ! 5 ¡ ¡ ¡  330 110 1 1 6 ¡ ¡ ¡  330 1 1011 7 ¡ ¡  4 4100 100 8 ¡ ¡ The homomorphism onto Sym(4) is given by r (12), s (134), t (1432) ! ! ! 13/18 Coxeter–Dynkin diagrams of type A, D and E and the binary polyhedral groups The graph for the binary octahedral group is 2 1 2 3 4 3 2 1 The graphs associated with the binary polyhedral groups are the affine Dynkin diagrams of types I Aen for the cyclic group of order n 1 Å I Den for the binary dihedral group of order 4n 8 ¡ I Ee6 for the binary tetrahedral group I Ee7 for the binary octahedral group I Ee8 for the binary icosahedral group This is the McKay correspondence. 14/18 The binary icosahedral group Class 1 z szrt 2 t 4 st 3 t Size 11 20 30 12 12 20 12 12 Order 1234556 10 10 Â1 111111111 1 p5 1 p5 1 p5 1 p5 Â2 2 2 10 Å2 ¡2 1 ¡ ¡2 ¡ Å2 ! ¡ ¡ 1 p5 1 p5 1 p5 1 p5 Â3 2 2 10 ¡2 Å2 1 ¡ Å2 ¡ ¡2 ! ¡ ¡ 1 p5 1 p5 1 p5 1 p5 Â4 330 1 ¡ Å2 ¡ ¡2 0 ¡ Å2 ¡ ¡2 ¡ 1 p5 1 p5 1 p5 1 p5  330 1 ¡ ¡ ¡ Å 0 ¡ ¡ ¡ Å 5 ¡ 2 2 2 2  4410 1 11 1 1 6 ¡ ¡ ¡ ¡  4 410 1 1 111 7 ¡ ¡ ¡ ¡  55 1100 100 8 ¡ ¡  6 600110 1 1 9 ¡ ¡ ¡ The homomorphism onto Alt(5) is given by r (12)(34), s (254), t (12345) ! ! ! 15/18 The group SU(2) Let S3 be the unit sphere in the division algebra H of quaternions. We regard H as a left vector space of dimension 2 over C. The elements of S3 act on H by multiplication on the right. This establishes an isomorphism between S3 and the special unitary group SU(2) of all matrices µ ®¯ ¶ where ® 2 ¯ 2 1. ¯ ® j j Å j j Æ ¡ Furthermore, there is an action of this matrix on polynomials in X and Y such that X ®X ¯Y and Y ¯X ®Y . ! Å !¡ Å 16/18 Representations of SU(2) Let Hm be the space of homogeneous polynomials of degree m in X and Y . This is an irreducible representation of SU(2) of degree m 1. Å Let Âm be the character of Hm. Every element of SU(2) is conjugate to a matrix of the form µ ¶ q 0 iθ A 1 where q e Æ 0 q¡ Æ and so m m 2 2 m m sin((m 1)θ) Âm(A) q q ¡ q ¡ q¡ Å . Æ Å Å ¢¢¢ Å Å Æ sinθ Thus, from the addition formula for sinθ we have ÂmÂ1 Âm 1 Âm 1. Æ ¡ Å Å 1 2 3 17/18 The McKay correspondence For each finite subgroup of SU(2) and the appropriate character  of degree 2 obtained from the representation H1, the matrix M is the adjacency matrix of the McKay graph. The graphs which occur are precisely those whose adjacency matrix has maximum eigenvalue equal to 2. The corresponding Cartan matrix is C 2I M. This describes the Æ ¡ root system of a reflection group (or Lie algebra, or . ) of type A˜n, D˜ n, E˜6, E˜7 or E˜8. The columns of the character table are eigenvectors of C and the eigenvalues are 2 Â(x ). ¡ i 18/18 References J. McKay. Graphs, singularities, and finite groups. The Santa Cruz Conference on Finite Groups. Proc. Symp. Pure Math., pp. 183–186. Amer. Math. Soc., 1980. P. Slodowy. Platonic solids, Kleinian singularities, and Lie groups. Algebraic geometry, Lecture Notes in Math. 1008, pp. 102–138. Springer, 1983. R. Steinberg. Finite subgroups of SU2, Dynkin diagrams and affine Coxeter elements. Pacific J. Math., 118 587–598, 1985. R. Stekolshchik. Notes on Coxeter transformations and the McKay correspondence Springer Monographs in Mathematics. 2008..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us