A New Dynamic Code Architecture for CFD Computations: Application to the Development of an Overset-Grid Compact High-Order Solver for Compressible Aerodynamics

A New Dynamic Code Architecture for CFD Computations: Application to the Development of an Overset-Grid Compact High-Order Solver for Compressible Aerodynamics

A new dynamic code architecture for CFD computations : application to the development of an overset-grid compact high-order solver for compressible aerodynamics Pierre-Yves Outtier To cite this version: Pierre-Yves Outtier. A new dynamic code architecture for CFD computations : application to the development of an overset-grid compact high-order solver for compressible aerodynamics. Other [cond-mat.other]. Ecole nationale supérieure d’arts et métiers - ENSAM, 2014. English. NNT : 2014ENAM0029. tel-02938718 HAL Id: tel-02938718 https://pastel.archives-ouvertes.fr/tel-02938718 Submitted on 15 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX i 2014-ENAM-0029 ✆✄ ✝ ✞✟✠✂✄ ✡ ✝ ✆✄ ☛ ☞ ✂ ☎✌✟ ☎✂✄ ✍✡ École doctorale n° 432 : ✁✂ ✄ ☎✁✄ Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par ✎✏✑✒✓✎✔ ✕✖✗✘✓✙✖✎✔ ✚✛✜✢✣✘✔✛✣✔ ✤✥ ✦✣✗✧ ✔✗ ★✢ ✗✘✔✣✧ ✱ ✲ ✩ ✪ ✫ ✬ ✭✮✯✭✰✫ Mécanique présentée et soutenue publiquement par Pierre-Yves OUTTIER le 30 septembre 2014 A new dynamic code architecture for CFD computations: application to the development of an overset-grid compact high-order solver for compressible aerodynamics Directeur de thèse : Paola CINNELLA Jury M. Christophe CORRE, Professeur, LMFA, Ecole Centrale de Lyon Président T ✹✺ M. Éric LAMBALLAIS, Professeur, ✳ ✴ ✵✶✷✶ ✸✶ , CNRS - Université de Poitiers - ENSMA Rapporteur ✼ ✴✷ ✽✾✿✵✷✶ ❀ ❁ ✺❂✿ ✵❃❄ M. Christian TENAUD, Professeur, LIMSI✻ Rapporteur H M. Christophe BENOIT, Ingénieur de Recherche, DSNA, ONERA Examinateur Mme Paola CINNELLA, Professeur, DynFluid, Università del Salento Examinateur È M. Alain LERAT, Professeur émérite, DynFluid, Arts et Métiers ParisTech Examinateur M. Bertrand MICHEL, Ingénieur de Recherche, DSNA, ONERA Examinateur S M. Michel VISONNEAU, DR CNRS, LHEA, Ecole Centrale de Nantes Examinateur E Arts et Métiers ParisTech - Centre de Paris DynFluid - Laboratoire de Dynamique des Fluides ii "Men who have an excessive faith in their theories or in their ideas are not only poorly disposed to make discoveries but they also make very poor observations. Claude Bernard (1813-1878), Introduction à la Médecine expérimentale (Paris, 1865) iv v Remerciements Je tiens en premier lieu à remercier ma directrice de thèse, le professeur Paola Cinnella, de m’avoir fourni l’opportunité de réaliser cette thèse. Depuis la recherche de financement jusqu’à la finalisation de mes travaux, je lui dois ma reconnaissance. J’ai apprécié tant la liberté dans l’orientation de mon travail que l’aide qu’elle m’a apporté. Le point le plus important pour moi est la collaboration qu’elle a permi entre le docteur Content et moi-même tout au long de mes années de thèse. J’ai enfin l’opportunité de remercier le docteur Content d’avoir partagé avec moi cette aventure de recherche. Que ce soient les cafés, les dealines, les discussions scientifiques ou musicales, les lignes de code, les equations, les latex, . je suis heureux d’avoir fait équipe avec toi Cédric. Je tiens également à remercier le professeur Lerat de m’avoir accueilli moi et mes questions sur le métier de chercheur, de m’avoir dirigé vers le professeur Cinnella pour concrétiser mon projet de thèse, et tout simplement pour son accueil toujours sympathique. Enfin, je remercie tous les membres du laboratoire, permanent ou doctorant. J’ai passé de très bonnes années qui m’auront assurément permis de grandir. Par ailleurs, mon meilleur allié pendant ces années a été Léontine. Mille mercis de m’avoir soutenu et accompagné dans ce projet, de m’avoir laissé m’épanouir dans mon travail, d’avoir aménagé une vie familiale, séparée de la vie professionnelle, tout simplement d’avoir été présente à mes côtés. Merci à mes parents, mon fère, ma soeur d’être toujours attentifs et attentionnés. Enfin, je remercie mes amis d’être présents et d’avoir feint de comprendre mes propos mal vulgarisés tentant d’expliquer la teneur de mes travaux. vi Contents Introduction 1 1 Generalities 17 1.1 Conservation laws: the continuous problem . .......... 19 1.1.1 Problemstatement.............................. 19 1.1.2 Flowmodels .................................. 20 1.1.3 Constitutive relations . 21 1.2 Discreteapproximations . ...... 24 1.2.1 Meshgeometry ................................. 24 1.2.2 Conservative approximation of space derivatives . ........... 25 1.2.3 Directional approximation of the space derivative . ............ 25 1.2.4 Residual-Based Compact approximation of the space derivative . 26 1.2.5 Discretization of the time derivative . ........ 31 1.3 Chaptersummary .................................. 35 1.4 Résuméduchapitre(french). ...... 36 2 A new dynamic code architecture 37 2.1 Development of a code architecture . ........ 39 2.1.1 Programminglanguages . 39 2.1.2 Design of a code for CFD computations . 39 2.1.3 Datastorage .................................. 41 2.1.4 Conceptofplug-in .............................. 42 2.1.5 Parallel computations . 42 2.2 PresentstatusoftheDynHoLabcode . ...... 44 2.2.1 Flowmodels .................................. 44 2.2.2 Spacediscretisations . 46 2.2.3 Timesteppingschemes. 46 2.2.4 Multiblock grid strategy . 46 2.3 Chaptersummary .................................. 47 2.4 Résuméduchapitre(french). ...... 47 3 Preliminary validations on conformal meshes 49 3.1 Linearadvectionproblems. ...... 51 3.1.1 Helicoidal advection of a Gaussian pulse . ........ 51 3.1.2 Circular advection of a hump . 53 3.1.3 Steady inviscid solution of the 2-D Bürgers equation . ........... 55 3.2 Compressible flow over the NACA0012 airfoil . ......... 57 3.2.1 Subsonicinviscid .............................. 57 vii viii CONTENTS 3.2.2 Transonicinviscid ............................. 59 3.2.3 Subsonicviscous ............................... 60 3.3 Validation of the RANS solver . ..... 65 3.3.1 Turbulentflatplate ............................. 65 3.3.2 Transonic flow over a NACA 64A10 . 67 3.3.3 ONERAM6wing ............................... 69 3.4 ILESon2-Dperiodichills . ..... 71 3.5 Chaptersummary .................................. 74 3.6 Résumméduchapitre(french) . ..... 74 4 High-order schemes on overlapping grids 79 4.1 Introduction.................................... 80 4.2 Oversetgridstrategy. .. .. .. .. .. .. .. .. ..... 81 4.2.1 Oversetmeshgeneration. 82 4.2.2 Interpolations................................ 86 4.2.3 Hole cutting treatment in the implicit algorithm . .......... 89 4.2.4 Implementation details . 90 4.3 Numericalexperiments. ..... 90 4.3.1 Grid-to-grid interpolation . ...... 90 4.3.2 Helicoidal advection of a Gaussian pulse . ........ 91 4.3.3 Circular advection of a hump . 91 4.3.4 Inviscid transonic flow over a NACA0012 . ..... 94 4.3.5 Flow past a tandem of airfoils . 96 4.4 Chaptersummary .................................. 96 4.5 Résumédechapitre(french). ...... 97 Conclusion 99 Conclusion 101 Annexes 103 A Discrete operators 105 A.1 Non-compactapproximations . 106 A.2 Compactapproximations . 107 A.2.1 Fourieranalysisoferrors. 108 B Treatment of matching joins 111 B.1 Treatment of domain connectivity . ....... 111 Introduction Context and motivation Computational Fluid Dynamics (CFD) has become a major tool in aeronautical industry for the design of aircraft components, thanks to its increased predictive capabilities, computational affordability and the possibility of drastically reducing the use of costly experimental investi- gations. The vision of the Advisory Council for Aviation Research and Innovation in Europe (ACARE [1]) for the future directions of the European aeronautical industry up to 2020 [4] and 2050 [5] introduces extremely ambitious goals on energy consumption, pollutant emissions and perceived aircraft noise, namely, a reduction of carbon dioxide emissions by 75%, NOx emissions by 90%, and noise by 65% before 2050. The achievement of these goals induces in turn heavy demands on future product performance and requires step changes in aircraft technology, which cannot be achieved without introducing new layout principles and investigating unconventional layouts. The associated research activities can be fostered by an intensive use of numerical simulation, which is considered by ACARE as a key enable for future aircraft design. Nowadays, several industrial CFD codes are routinely employed by European industries for aircraft design like, e.g. ONERA’s code elsA [8], DRL’s code TAU [3], Numeca’s code Fine- Turbo [6], and many other. In fact, CFD can be considered as a mature tool for configurations at their design point in the flight envelop. However, a growing use of simulation capabilities is required in the future, especially for investigating configurations at off design conditions or highly loaded designs involving complicated flow features already at the nominal point. For this purpose, major developments are required to improve the predictive capabilities of CFD codes for taking into account complex flow phenomena like, e.g., those arising in unsteady and/or separated flows among other. At the present stage of development, industrial codes are essentially based on robust nomi- nally second-order

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    133 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us