Searching for Reactor Antineutrino Flavor Oscillations with the Double Chooz Far Detector Arthur James Franke Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2012 Arthur James Franke All Rights Reserved ABSTRACT Searching for Reactor Antineutrino Flavor Oscillations with the Double Chooz Far Detector Arthur James Franke This dissertation presents results from a search for reactorν ¯e flavor oscillations using the Double Chooz Far Detector. The search was performed by observing the rate and energy spectrum ofν ¯e interacting via Inverse Beta Decay in a Gd-doped liquid scintillator detector, and comparing the observation to an expectation based on a prediction of the emitted reactor flux. The Columbia University neutrino group was instrumental in construction of the Double Chooz Outer Veto, as well as the analysis efforts leading to two oscillation measurement results. The most recent analysis is presented herein, focusing on 251.27 days of data (or 33.71 GW-ton-years of exposure). In these data, 8249 IBD candidates were observed, compared to a signal+background prediction of 8936.8. A fit to a two-neutrino oscillation model considering event rate, spectral shape, and time yields a best-fit value of sin2 (2θ ) = 0.109 0.030 (stat.) 0.025 (syst.) at ∆m2 = 2.32 10−3 eV2, with 13 ± ± 31 × 2 χRS/d.o.f. = 42.1/35. A frequentist method deems the null-oscillation hypothesis excluded by the data at 99.8% C.L., or 2.9σ. These results are in agreement with the measurements of other modern reactorν ¯e experiments. Table of Contents 1 Introduction 1 I Neutrino Oscillations & Experimental Searches 4 2 Neutrino Flavor Oscillations 5 2.1 Neutrinos in the Standard Model of Particle Physics . ......... 5 2.2 NeutrinoFlavorMixing . .. .. .. .. .. .. .. .. 7 2.2.1 The PMNS Neutrino Mixing Matrix . 7 2.2.2 Oscillation Probability Formulas . .... 8 2.3 Possible Mechanisms for Neutrino Masses . ...... 14 3 Neutrino Oscillation Experiments 16 3.1 Past Experimental Oscillation Results . ....... 16 3.2 Modern Searches for θ13-Driven Oscillations . 20 3.2.1 Accelerator-Based Searches . 21 3.2.2 Reactor-Based Searches . 22 II The Double Chooz Experiment 26 4 The Double Chooz Experiment 27 4.1 ExperimentSite&Layout. 28 4.2 DetectorDesign.................................. 30 4.2.1 InnerDetector .............................. 30 i 4.2.2 InnerVeto................................. 34 4.2.3 SteelShielding .............................. 34 4.2.4 OuterVeto ................................ 34 4.2.5 CalibrationSystems ........................... 35 4.3 Main Detector Data Acquisition Systems . ..... 39 4.3.1 Performance ............................... 40 5 The Double Chooz Outer Veto 42 5.1 Design....................................... 42 5.2 ModuleDesign .................................. 44 5.3 DAQDesign.................................... 46 5.3.1 Electronics Hardware Design . 46 5.3.2 Maroc2CrosstalkTesting . 49 5.4 OVEventBuilderandDOGSifier . 59 5.5 MonitoringSoftware .............................. 59 5.5.1 OVOnlineMonitor ........................... 59 5.5.2 OVOfflineMonitor ........................... 60 5.6 Performance.................................... 61 III Double Chooz Analyses 64 6 Neutrino Signal Flux Estimation & Uncertainties 65 6.1 Instantaneousν ¯e RatefromaSingleReactor . 65 6.1.1 Reactor Fission Rate Calculation . 66 6.1.2 Mean Cross-Section per Fission . 71 6.2 BinnedExpectedNeutrinoCount. 76 6.3 Bugey4AnchorPoint............................... 78 6.4 Binned Expectation Uncertainty Propagation . ........ 79 6.4.1 Multiple Integration Periods . 81 6.4.2 Covariance Matrix Components of Prediction Anchored to ILL Spectra 81 6.4.3 Covariance Matrix Components of Prediction Anchored to Bugey4 Rate 84 ii 6.4.4 Covariance Matrix Components of Prediction Anchored to Measured NearDetectorSpectrum. 86 6.4.5 Comparison of Uncertainty Contributions . ..... 87 7 Second Double Chooz Publication 89 7.1 DataSet...................................... 89 7.2 CandidateSelectionCuts . 89 7.2.1 Second Publication Analysis . 89 7.2.2 PeripheralAnalyses ........................... 97 7.2.3 Effects of IBD Selection on Detector Livetime . ..... 98 7.3 SignalPrediction ................................ 99 7.3.1 ReactorPrediction ............................ 101 7.3.2 Signal Selection Efficiency . 102 7.3.3 SignalPredictionSummary . 110 7.4 BackgroundMeasurements . 112 7.4.1 Accidental Background . 112 7.4.2 CosmogenicLithium-9 . 114 7.4.3 Fast Neutron & Stopping µ Backgrounds . 117 7.4.4 Cross-checks of Background Measurements . 124 7.5 EnergyScale ................................... 127 7.5.1 Per-channelGainvs.Charge . 127 7.5.2 Detector Response Spatial Correction . 128 7.5.3 Detector Response Time Dependence Correction . 128 7.5.4 AbsoluteEnergyScale . .. .. .. .. .. .. .. 131 7.5.5 Uncertainty Propagation . 131 7.6 Multiple Integration Periods . 133 7.7 OscillationFit&Results. 136 7.7.1 Parameter-Dependent Covariance Matrix . 139 7.7.2 Definitions of χ2 Statistics........................ 141 7.7.3 Results .................................. 145 7.7.4 Frequentist Confidence Intervals . 148 iii 2 7.7.5 Fit Without MINOS ∆m31 Constraint.. .. .. .. .. 151 7.8 MoreTwo-Reactor-OffData. 152 IV Context & Conclusions 158 8 Double Chooz Measurements in Context 159 8.1 Winter 2011/Spring 2012: First Oscillation Results . ........... 159 8.2 Summer2012: UpdatedResults. 160 8.3 The Post-θ13 Era................................. 162 8.3.1 Outlook on the PMNS Matrix . 162 8.3.2 Outlook on Reactorν ¯e Experiments . .. .. .. .. .. 164 9 Conclusions 168 V Bibliography 169 Bibliography 170 VI Appendices 188 A First Double Chooz Publication 189 A.1 DataSet...................................... 189 A.2 CandidateSelectionCuts . 189 A.2.1 First Publication Analysis . 189 A.2.2 Effects of IBD Selection on Detector Livetime . 190 A.3 SignalPrediction ................................ 191 A.3.1 ReactorPrediction ............................ 192 A.3.2 Signal Selection Efficiency . 192 A.3.3 SignalPredictionSummary . 197 A.4 BackgroundMeasurements . 198 A.4.1 Accidental Background . 199 iv A.4.2 CosmogenicLithium-9 . 200 A.4.3 Fast Neutron & Stopping µ Backgrounds . 201 A.4.4 Cross-checks of Background Measurements . 203 A.5 EnergyScale ................................... 205 A.5.1 Detector Response Correction Functions . 205 A.5.2 Uncertainty Propagation . 206 A.6 OscillationFit&Results. 206 A.6.1 Parameter-Independent Covariance Matrix . 210 A.6.2 Definitions of χ2 Statistics........................ 210 A.6.3 Results .................................. 213 A.6.4 Frequentist Confidence Intervals . 214 pred DC,far A.6.5 Synthesized Quantities: RDC , σf , and σf ........... 216 B CUfits 219 B.1 Design....................................... 219 B.2 Usage ....................................... 221 C The MultiSim Method 223 C.1 General Description of MultiSim Method . 223 C.2 Applied to Neutrino Reference Spectra . 225 C.2.1 Application&Results . .. .. .. .. .. .. .. 227 C.2.2 Summary ................................. 229 C.3 Applied to Reactor Uncertainties . 229 C.4 Applied to Energy Scale Uncertainties . 232 C.4.1 FirstDoubleChoozPublication. 233 C.4.2 Second Double Chooz Publication . 234 D DCRxtrTools Neutrino Event Generator & Uncertainty Calculator 236 D.1 DescriptionofOperation. 236 D.1.1 Inputs................................... 237 D.1.2 Outputs.................................. 240 v D.1.3 GeneralProcess ............................. 240 D.2 Monte Carlo Event Generation . 241 D.3 Uncertainty Propagation . 243 true reco D.3.1 Propagation from Eν to Ee+ .................... 243 D.4 Rebinning of Reference Spectra and Uncertainties . .......... 243 D.4.1 RebinningReferenceSpectra . 244 D.4.2 Rebinning Covariance Matrices . 244 D.5 Power-Scaling of Fission Rates . 245 E OV Online Monitor 247 E.1 Architecture.................................... 247 E.2 Data Handling & Visualization . 251 F Drawing Confidence Intervals using a Frequentist Method 253 F.1 Procedure for Drawing Confidence Intervals . ....... 253 F.1.1 Generation of Pseudoexperiments . 254 F.1.2 Goodness-of-Fit Statistic Comparison . 255 F.1.3 DrawingConfidenceIntervals . 255 F.2 Procedure for Testing the Null-Oscillation Hypothesis ............ 256 G Pulls vs. Covariance χ2 257 G.1 Motivation .................................... 257 G.2 Tests With Two Simple χ2 Statistics ...................... 258 G.2.1 Uncertainties on Linear Parameters . 258 G.2.2 Uncertainties on Multiplicative Parameters . ....... 260 G.3 Commentary ................................... 263 G.4 Code........................................ 264 G.4.1 Linear Uncertainties . 264 G.4.2 Multiplicative Uncertainties . 264 G.4.3 Single Multiplicative Uncertainty . 264 vi H Covariance Matrix Component Break-Out 265 H.1 Method ...................................... 266 H.2 Limitations .................................... 266 I Second Publication Data Release 267 J IT Infrastructure 270 J.1 OuterVetoComputers.............................. 270 J.2 High-Availability MySQL Server . 271 J.2.1 BackupScheme.............................. 272 J.3 NagiosResourceMonitoring. 273 K Double Chooz Publications 274 K.1 FirstDoubleChoozPublication. 274 K.2 SecondDoubleChoozPublication . 282 vii List of Figures 2.1 Illustration of the neutrino mass eigenstates as superpositions of the flavor eigenstates (colored regions). Mass-squared splittings shown are approxi- mately those as observed by experiment
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages331 Page
-
File Size-