Bochner Spaces

Bochner Spaces

Bochner Spaces Wolfgang Stefani LMU München Hüttenseminar 26.-29.06.2014 Wolfgang Stefani Bochner Spaces 1/12 Motivation We consider a parabolic system of partial differential equations @t u − div DF(ru) = 0 on (0; T) × B = QT u(t; ·) = 0 on [0; T] × @B u(0; ·) = u0(·) a. e., and postulate N u : QT ! R ; F : RdN ! R; 1;2 u0 2 W (B): What is the appropriate solutions space? Wolfgang Stefani Bochner Spaces 2/12 The Bochner Integral I Let (X; k · kX ) be a Banach space. A stair function is a v :[0; T] ! X, XN v(t) = χAk (t)xk ; k=1 S for Ak : Ai \ Aj = ; and k Ak = [0; T]: If there exists a sequence (un)n of stair functions with un(t) ! u(t); in X; RT and kun(t) − u(t)kX dt ! 0; for n ! 1; 0 it is Bochner measurable. Wolfgang Stefani Bochner Spaces 3/12 The Bochner Integral II Now we can define RT RT L1 n n u dt = limn!1 un(t) dt = limn!1 (Ak )xk : 0 0 And thus the space L p(0; T; X) of all functions u with 1 0 1 p BZT C B C kukL p (0;T;X) := B ku(t)kX dtC < 1: @B AC 0 Wolfgang Stefani Bochner Spaces 4/12 The space Cm([0; T]; X) Let u be m-times differentiable, m X (i) kukCm(X) = max ju (t)j; 0≤t≤T i=0 and denote their space Cm([0; T]; X). This space is Banach. Wolfgang Stefani Bochner Spaces 5/12 Properties Let X; Y be Banach spaces, 1 ≤ p < 1 and m 2 N. Then a) Cm([0; T]; X) is dense in L p(0; T; X) and the embedding Cm([0; T]; X) ,! L p(0; T; X); is continuous. b) the set of all polynomials v :[0; T] ! X, i.e. n X i v(t) = ait ; i=1 p with ai 2 X and n 2 N is dense in both C([0; T]; X) and L (0; T; X). Wolfgang Stefani Bochner Spaces 6/12 Properties cont. (c) if the embedding X ! Y is continuous, the embedding L r (0; T; X) ,! L q(0; T; Y); for 1 ≤ q ≤ r ≤ 1; is also continuous. (d) The closure 1 k·kLp (X) C0 ([0; T]; X) can be identified by L p(0; T; X): Wolfgang Stefani Bochner Spaces 7/12 Negative Sobolev Spaces W −k;q Let m 2 N; 1 < p < 1 and p0 its Hölder conjugate. Z kvk−m;p = sup u(x)v(x) dx : 2 m;p Q u W0 (Ω); kukm;p ≤1 0 Now we denote W −m;p(Ω) as the closure of L p (Ω), i.e. k·k− 0 p0 m;p ≡ m;p ? ≡ −m;p L (Ω) W0 (Ω) W (Ω): Wolfgang Stefani Bochner Spaces 8/12 Generalised derivative Let X be Banach spaces, u; w 2 L 1(0; T; X). If w satisfies Z T Z T (n) n 1 ' (t)u(t) dt = (−1) '(t)w(t); for all ' 2 C0 ([0; T]; R); 0 0 then it is the n-th generalised derivative of u on (0; T). We denote u(n) = w. Wolfgang Stefani Bochner Spaces 9/12 Dual Space of L p(0; T; X) 1 1 Let X be a reflexive Banach space and p + p0 = 1. If 1 < p < 1, then L p(0; T; X) is reflexive and we have ? 0 L p(0; T; X) L p (0; T; X ?); i.e. its dual space is isometrically isomorphic to the Hölder conjugate Bochner space of the dual X ?. Wolfgang Stefani Bochner Spaces 10/12 Construction of the Solution Space If we have u 2 L p(0; T; X) with the generalised derivative p0 ? @t u 2 L (0; T; X ) form a real Banach space with the norm kukW p;q = kukL p (0;T;X) + k@t ukL q(0;T;Z): We denote this space W p;q(0; T; X; Z). Wolfgang Stefani Bochner Spaces 11/12 Application 1;p −1;p We set X = W0 (B) and Z = W (B). Then we get p;q 1;p −1;p W (0; 1; W0 ; W ) = 2 p( ; 1;p( )) 2 q( ; −1;p( )) u L 0; T W0 B @t u L 0; 1 W B : Wolfgang Stefani Bochner Spaces 12/12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us