
Computational Complexity Let's take a look at some familiar problems. I Diophantine Problem I Matching Problem I Vertex Cover Problem I Graph Isomorphism Problem Computational Complexity, by Fu Yuxi Introduction 1 / 13 We learnt from Computability Course and Algorithm Course that I Diophantine is undecidable, I Matching is in P, I Vertex Cover is NP-complete, and I Graph Isomorphism is yet to be classified. Computational Complexity, by Fu Yuxi Introduction 2 / 13 This course is about classifying and comparing problems by the amount of resource necessary to solve them. Computational Complexity, by Fu Yuxi Introduction 3 / 13 We shall get to know some of the main techniques in theoretical investigation. I Recursion Theoretical Method I Combinatorial Method I Algebraic Method I Probabilistic Method I ... Computational Complexity, by Fu Yuxi Introduction 4 / 13 We shall be exposed to many great ideas in Computer Science. Computational Complexity, by Fu Yuxi Introduction 5 / 13 Blum's Speedup Theorem, Borodin-Trakhtenbrot Gap Theorem, BPP, Hierarchy Theorem, Savitch Theorem, Stockmeyer-Meyer Theorem, NC, Karp Theorem, Cook-Levin Theorem, PH ⊆ PSPACE, Ladner Theorem, Baker-Gill-Solovay Theorem, Immerman-Szelepcs´enyi Theorem, DistNP, Circuit Complexity, Chandra-Kozen-Stockmeyer Theorem, PCP Theorem, P-Completeness, Aleliunas-Karp-Lipton-Lov´asz-Rackoff Theorem, PP, Valiant Theorem, ]P, Valiant-Vazirani Theorem, Toda Theorem, Impagliazzo-Levin Theorem, Levin Theory, Goldbach-Levin Theorem, NP-Completeness, Zero Knowledge, Yao's Unpredictability Theorem, Lund-Karloff-Fortnow-Nisan Theorem, Yao's Max-Min Theorem, Derandomization, Barrier Results, Goldbach-Goldwasser-Micali Theorem, Pseudorandomness, One-Way Function, Nisan-Wigderson Generator, Hartmanis Conjecture, Hardness Amplification, Exponential Conjecture, Hartmanis-Stearns-Hennie Theorem, IP = PSPACE, Hierarchy Theorem, Reigold Theorem, Sudan's List Decoding, Goldwasser-Sipser Theorem, Randomness Extractor, Natural Proof, Adleman Theorem, Babai's AM, Log-Rank Conjecture, Circuit Lower Bound, QIP = PSPACE,... Computational Complexity, by Fu Yuxi Introduction 6 / 13 1. Christos Papadimitriou. Computational Complexity. 1994. 2. Ingo Wegener. Complexity Theory, exploring the limits of efficient algorithms. 2005. 3. Oded Goldreich. Computational Complexity, a conceptual perspective. 2008. 4. Sanjeev Arora, Boaz Barak. Computational Complexity, a modern approach. 2009. Computational Complexity, by Fu Yuxi Introduction 7 / 13 Your final score of the course: I Performance in class (20) I Test (20 + 15 + 15 + 15 + 15 = 80) Computational Complexity, by Fu Yuxi Introduction 8 / 13 Test One Design a universal Turing Machine U that satisfies the following: I If Mα runs in O(T (n)) time, then U(α; ) runs in O(T (n) log T (n)) time. You need to write down the complete (executable) program of U and explain how it works. Computational Complexity, by Fu Yuxi Introduction 9 / 13 Test Two Prove Ladner Theorem. Computational Complexity, by Fu Yuxi Introduction 10 / 13 Test Three Let L be decided by a P-time NDTM N. Construct a Cook-Levin reduction from L to SAT that is implicitly logspace computable. Computational Complexity, by Fu Yuxi Introduction 11 / 13 Test Four Prove Immerman-Szelepcs´enyiTheorem. Computational Complexity, by Fu Yuxi Introduction 12 / 13 Test Five 1. Prove that reachability problem is in NC2. 2. Prove that logspace reduction is efficient parallel. 3. Suppose L is P-complete. Prove that L 2 NC iff P = NC. Computational Complexity, by Fu Yuxi Introduction 13 / 13.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages14 Page
-
File Size-