Lectures on Fractal Geometry and Dynamics

Lectures on Fractal Geometry and Dynamics

<p>Lectures on fractal geometry and dynamics </p><p>Michael Hochman<sup style="top: -0.3615em;">∗ </sup>March 25, 2012 </p><p>Contents </p><p>1 Introduction 2 Preliminaries <br>23</p><ul style="display: flex;"><li style="flex:1">3 Dimension </li><li style="flex:1">3</li></ul><p></p><p>349<br>3.1 A&nbsp;family of examples: Middle-α Cantor sets . . . . . . . . . . . . . . . . 3.2 Minkowski&nbsp;dimension .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Hausdorff&nbsp;dimension .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . </p><p></p><ul style="display: flex;"><li style="flex:1">4 Using&nbsp;measures to compute dimension </li><li style="flex:1">13 </li></ul><p></p><p>4.1 The&nbsp;mass distribution principle&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;13 4.2 Billingsley’s&nbsp;lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;15 4.3 Frostman’s&nbsp;lemma .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;18 4.4 Product&nbsp;sets .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;22 </p><p></p><ul style="display: flex;"><li style="flex:1">5 Iterated&nbsp;function systems </li><li style="flex:1">24 </li></ul><p></p><p>5.1 The&nbsp;Hausdorff metric .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;24 5.2 Iterated&nbsp;function systems&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;26 5.3 Self-similar&nbsp;sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 5.4 Self-affine&nbsp;sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;36 </p><p></p><ul style="display: flex;"><li style="flex:1">6 Geometry&nbsp;of measures </li><li style="flex:1">39 </li></ul><p></p><p>6.1 The&nbsp;Besicovitch covering theorem .&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;39 6.2 Density&nbsp;and differentiation theorems&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;45 6.3 Dimension&nbsp;of a measure at a point&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;48 6.4 Upper&nbsp;and lower dimension of measures&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;50 </p><p><sup style="top: -0.3174em;">∗</sup>Send comments to [email protected] </p><p>1<br>6.5 Hausdorff&nbsp;measures and their densities&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;52 </p><p>1 Introduction </p><p>Fractal geometry and its sibling, geometric measure theory, are branches of analysis which study the structure of “irregular” sets and measures in metric spaces, primarily R<sup style="top: -0.3298em;">d</sup>. The&nbsp;distinction between regular and irregular sets is not a precise one but informally, regular sets might be understood as smooth sub-manifolds of R<sup style="top: -0.3298em;">k</sup>, or perhaps Lipschitz graphs, or countable unions of the above; whereas irregular sets include just about everything else, from the middle-<sup style="top: -0.358em;">1</sup><sub style="top: 0.3135em;">3 </sub>Cantor set (still highly structured) to arbitrary Cantor sets (irregular, but topologically the same) to truly arbitrary subsets of R<sup style="top: -0.3299em;">d</sup>. <br>For concreteness, let us compare smooth sub-manifolds and Cantor subsets of R<sup style="top: -0.3299em;">d</sup>. <br>These two classes differ in many aspects besides the obvious topological one. Manifolds possess many smooth symmetries; they carry a natural measure (the volume) which has good analytic properties; and in most natural examples, we have a good understanding of their intersections with hyperplanes or with each other, and of their images under linear or smooth maps.&nbsp;On the other hand, Cantor sets typically have few or no smooth symmetries; they may not carry a “natural” measure, and even if they do, its analytical properties are likely to be bad; and even for very simple and concrete examples we do not completely understand their intersections with hyperplanes, or their images under linear maps. <br>The motivation to study the structure of irregular sets, besides the obvious theoretical one, is that many sets arising in analysis, number theory, dynamics and many other mathematical fields are irregular to one degree or another, and the metric and geometric properties of these objects often provides meaningful information about the context in which they arose. At the simplest level, the theories of dimension provide a means to compare the size of sets which coarser notions fail to distinguish.&nbsp;Thus the set of well approximable numbers x ∈ R (those with bounded partial quotients) and the </p><p>set of Liouvillian numbers both have Lebesgue measure 0, but set of well-approximable numbers has Hausdorff dimension 1, hence it is relatively large, whereas the Liouvillian numbers form a set of Hausdorff dimension 0, and so are “rare”.&nbsp;Going deeper, however, it turns out than many problems in dynamics and number theory can be formulated in terms of bounds on the dimension of the intersection of certain very simple Cantor sets with lines, or linear images of products of Cantor sets.&nbsp;Another connection to dynamics arises from the fact that there is often an intimate relation between the dimension of an invariant set or measure and its entropy (topological or measure-theoretic). Geometric properties may allow us to single out physically significant invariant measures among the many invariant measures of a system.&nbsp;Finer information encoded in an invariant mea- </p><p>2sure may actually encode the dynamics which generated it, leading to rigidity results. The list goes on. <br>Our goal in this course is primarily to develop the foundations of geometric measure theory, and we cover in detail a variety of classical subjects.&nbsp;A secondary goal is to demonstrate some applications and interactions with dynamics and metric number theory, and we shall accomplish this mainly by our choices of methods, examples, and open problems which we discuss. <br>We assume familiarity with the basic results on metric spaces, measure theory and <br>Lebesgue integration. </p><p>2 Preliminaries </p><p>N = {1, 2, 3 . . .}. We denote by B<sub style="top: 0.1363em;">r</sub>(x) the closed ball of radius r around x: </p><p>B<sub style="top: 0.1364em;">r</sub>(x} = {y : d(x, y) ≤ r} </p><p>The open ball is denoted B<sub style="top: 0.2247em;">r</sub><sup style="top: -0.3298em;">◦</sup>(x); as our considerations are rarely topological is will appear less often. We denote the indicator function of a set A by 1<sub style="top: 0.1407em;">A</sub>. <br>We work in R<sup style="top: -0.3299em;">d </sup>or sometimes a complete metric space, and all sets are assumed to be Borel, and all functions are Borel measurable, unless otherwise stated.&nbsp;Also, all measures are Radon unless otherwise stated:&nbsp;recall that µ is Radon if it is a Borel measure taking finite values on compact sets. Such measures are regular, i.e. </p><p>µ(E) = inf{µ(U) : U is open and E ⊆ U} <br>= sup{µ(K) : K is compact and K ⊆ E} </p><p>3 Dimension </p><p>The most basic quantity of interest in connection to the small scale geometry of a set in a metric space is its dimension.&nbsp;There are many non-equivalent notions with this name.&nbsp;We shall consider the two main ones, Minkowski (box) dimension and Hausdorff dimension.&nbsp;We give the definitions in general for metric spaces, but most of our applications and some of the results in these sections will already be special to R<sup style="top: -0.3298em;">d</sup>. </p><p>3.1 A&nbsp;family of examples: Middle-α Cantor sets </p><p>Before discussing dimension, we introduce one of the simplest families of “fractal” sets, which we will serve to demonstrate the definitions that follow. </p><p>3<br>Let 0 &lt; α &lt; 1. The&nbsp;middle-α Cantor set C<sub style="top: 0.1364em;">α </sub>⊆ [0, 1] is defined by a recursive procedure. For&nbsp;n = 0, 1, 2, . . .&nbsp;we construct a set C<sub style="top: 0.1364em;">α,0 </sub>which is a union of 2<sup style="top: -0.3298em;">n </sup>closed </p><p>n</p><p>intervals, indexed by sequences i = i<sub style="top: 0.1363em;">1 </sub>. . . i<sub style="top: 0.1363em;">n </sub>∈ {0, 1} and each of length ((1−α)/2)<sup style="top: -0.3299em;">n</sup>. To begin let C<sub style="top: 0.1363em;">α,0 </sub>= [0, 1] and I = [0, 1] (indexed by the unique empty sequence).&nbsp;Assuming </p><ul style="display: flex;"><li style="flex:1">that C<sub style="top: 0.1363em;">α,n </sub>has been defined and is the disjoint union of the 2<sup style="top: -0.3299em;">n </sup>closed intervals I<sub style="top: 0.1363em;">i ...i </sub></li><li style="flex:1">,</li></ul><p></p><p>1</p><p>n</p><p>n</p><p>i<sub style="top: 0.1363em;">1 </sub>. . . i<sub style="top: 0.1363em;">n </sub>∈ {0, 1} , divide each of the intervals into the two subintervals, I<sub style="top: 0.1363em;">i ...i 0</sub>, I<sub style="top: 0.1363em;">i ...i 1 </sub></p><p>⊆</p><p>I<sub style="top: 0.1363em;">i ...i&nbsp;</sub>which remain after removing from I<sub style="top: 0.1363em;">i </sub>the open subinterval with the same center </p><p>1</p><p>n</p><p>1</p><p>n</p><p>1</p><p>n</p><p>as I<sub style="top: 0.1364em;">i ...i&nbsp;</sub>and α times shorter. Finally let </p><p>1</p><p>n</p><p>[</p><p>C<sub style="top: 0.1364em;">α,n+1 </sub></p><p>=</p><p>I<sub style="top: 0.1364em;">i </sub></p><p>n+1 </p><p>i∈{0,1} </p><p>Clearly C<sub style="top: 0.1363em;">α,0 </sub>⊇ C<sub style="top: 0.1363em;">α,1 </sub>⊇ . . ., and since the sets are compact, </p><p>∞</p><p>\</p><p></p><ul style="display: flex;"><li style="flex:1">C<sub style="top: 0.1363em;">α </sub>= </li><li style="flex:1">C<sub style="top: 0.1363em;">α,n </sub></li></ul><p></p><p>n=0 </p><p>is compact and nonempty. <br>All of the sets C<sub style="top: 0.1364em;">α</sub>, 0 &lt; α &lt; 1 are mutually homeomorphic, since all are topologically <br>Cantor sets (i.e.&nbsp;compact and totally disconnected without isolated points).&nbsp;They all are of first Baire category. And they all have Lebesgue measure 0, since one may verify that Leb(C<sub style="top: 0.2247em;">α</sub><sup style="top: -0.3299em;">n</sup>) = (1 − α)<sup style="top: -0.3299em;">n </sup>→ 0. Hence&nbsp;none of these theories can distinguish between them. <br>Nevertheless qualitatively it is clear that C<sub style="top: 0.1363em;">α </sub>becomes “larger” as α → 0, since decreasing α results in removing shorter intervals at each step.&nbsp;In order to quantify this one uses dimension. </p><p>3.2 Minkowski&nbsp;dimension </p><p>Let (X, d) be a metric space, for A ⊆ X let <br>|A| = diam A = sup d(x, y) </p><p>x,y∈A </p><p>S</p><p>A cover of A is a collection of sets E such that A ⊆ <sub style="top: 0.2688em;">E∈E </sub>E. A δ-cover is a cover such that |E| ≤ δ for all E ∈ E. The simplest notion of dimension measures how many sets of small diameter are needed to cover a set. </p><p>Definition 3.1. Let (X, d) be a metric space.&nbsp;For a bounded set A and δ &gt; 0 let <br>4<br>N(A, δ) denote the minimal size of a δ-cover of A, i.e. </p><p>k</p><p>[</p><p>N(A, δ) = min{k : A ⊆ </p><p>A<sub style="top: 0.1363em;">i </sub>and |A<sub style="top: 0.1363em;">i</sub>| ≤ δ} </p><p>i=1 </p><p>The Minkowski dimension of A is </p><p>log N(A, δ) <br>Mdim(A) =&nbsp;lim δ→∞ log(1/δ) </p><p>assuming the limit exists. If not we define the upper and lower dimensions log N(A, δ) <br>Mdim(A) = lim&nbsp;sup </p><p>δ→∞ </p><p>log(1/δ) log N(A, δ) <br>Mdim(A) = lim&nbsp;inf </p><p>δ→∞ </p><p>log(1/δ) </p><p>Remark 3.2. . </p><p>1. Mdim&nbsp;A = α means that N(A, δ) grows approximately as δ<sup style="top: -0.3299em;">−α </sup>as δ → 0; more precisely, Mdim&nbsp;A = α if and only if for every ε &gt; 0, </p><p>δ<sup style="top: -0.3754em;">−(α−ε) </sup>≤ N(A, δ) ≤ δ<sup style="top: -0.3754em;">−(α+ε) </sup>for sufficiently small δ &gt; 0 </p><p>2. Clearly <br>Mdim ≤ Mdim </p><p>and Mdim exists if and only if the two are equal. <br>3. Minkowski dimension is not defined for unbounded sets and may be infinite for bounded sets as well, though we will se that it is finite for bounded sets in R<sup style="top: -0.3299em;">d</sup>. </p><p>4. From&nbsp;the definitions it is immediate that N(A, δ) ≤ N(B, δ) when A ⊆ B, consequently, <br>Mdim A ≤ Mdim B </p><p>and similarly for the upper and lower versions. <br>5. Fromt he definition it is also clear that if δ &lt; δ<sup style="top: -0.3299em;">0 </sup>then N(A, δ) ≥ N(A, δ<sup style="top: -0.3299em;">0</sup>). In particular if ε<sub style="top: 0.1481em;">k </sub>&amp; 0 and ε<sub style="top: 0.1481em;">k</sub>/ε<sub style="top: 0.1481em;">k+1 </sub>≤ C &lt; ∞, then we can compute the limits int he definition of Mdim and its variants along δ<sub style="top: 0.1481em;">k</sub>. Indeed, for every δ &gt; 0 there is a k = k(δ) such that ε<sub style="top: 0.1482em;">k+1 </sub>&lt; δ ≤ ε<sub style="top: 0.1482em;">k</sub>. This implies </p><p>N(A, ε<sub style="top: 0.1481em;">k+1</sub>) ≤ N(A, δ) ≤ N(A, ε<sub style="top: 0.1481em;">k</sub>) </p><p>5<br>The assumpetion implies that log(1/δ)/ log(1/ε<sub style="top: 0.185em;">k(δ)</sub>) → 1 as δ → 0, so the inequality above implies the claim after taking logarithms and dividing by log(1/δ), log(1/ε<sub style="top: 0.1481em;">k</sub>), log(1/ε<sub style="top: 0.1481em;">k+1</sub>). </p><p>Example 3.3. . </p><p>1. A&nbsp;point has Minkowski dimension 0, since N({x<sub style="top: 0.1363em;">0</sub>}, δ) = 1 for all δ. More&nbsp;generally <br>N({x<sub style="top: 0.1363em;">1</sub>, . . . , x<sub style="top: 0.1363em;">n</sub>}, δ) ≤ n, so finite sets have Minkowski dimension 0. </p><p>2. A box B in R<sup style="top: -0.3299em;">d </sup>can be covered by c · δ<sup style="top: -0.3299em;">−d </sup>boxes of side δ, i.e.&nbsp;N(B, δ) ≤ cδ<sup style="top: -0.3299em;">−d </sup><br>.</p><p>Hence dim&nbsp;B ≤ d. </p><p>1</p><p>3. If&nbsp;A ⊆ R<sup style="top: -0.3298em;">d </sup>has Mdim&nbsp;A &lt; d then Leb(A) = 0.&nbsp;Indeed, choose ε = (d − Mdim A). </p><p>2</p><p>For all small enough δ, there is a cover of A by δ<sup style="top: -0.3299em;">−(Mdim A+ε) </sup>sets of diameter ≤ δ. Since a set of diameter ≤ δ can itself be covered by a set of volume &lt; cδ<sup style="top: -0.3299em;">d</sup>, we find that there is a cover of A of total volume ≤ cδ<sup style="top: -0.3299em;">d </sup>· δ<sup style="top: -0.3299em;">−(Mdim A+ε) </sup>= cδ<sup style="top: -0.3299em;">ε</sup>. Since&nbsp;this holds for arbitrarily small δ, we conclude that Leb(A) = 0. Equivalently, if A ⊆ R<sup style="top: -0.3298em;">d </sup>and Leb(A) &gt; 0 then Mdim&nbsp;A ≥ d. In&nbsp;particular for a box B we have, using (2), that Mdim&nbsp;B = d. </p><p>4. A line segment in R<sup style="top: -0.3299em;">d </sup>has Minkowski dimension 1.&nbsp;A relatively open bounded subset of a plane in R<sup style="top: -0.3298em;">3 </sup>has Minkowski dimension 2. More generally any compact k-dimensional C<sup style="top: -0.3298em;">1</sup>-sub-manifold of R<sup style="top: -0.3298em;">d </sup>has box dimension k. </p><p>5. For&nbsp;C<sub style="top: 0.1364em;">α </sub>as before, Mdim&nbsp;C<sub style="top: 0.1364em;">α </sub>= log 2/ log(2/(1 − α)). Let us demonstrate this. <br>To get an upper bound, notice that for δ<sub style="top: 0.1363em;">n </sub>= ((1 − α)/2)<sup style="top: -0.3299em;">n </sup>the sets C<sup style="top: -0.3299em;">n </sup>are covers of C<sub style="top: 0.1363em;">α </sub>by 2<sup style="top: -0.3299em;">n </sup>intervals of length δ<sub style="top: 0.1363em;">n</sub>, hence N(C<sub style="top: 0.1363em;">α</sub>, δ<sub style="top: 0.1363em;">n</sub>) ≤ 2<sup style="top: -0.3299em;">n</sup>. If&nbsp;δ<sub style="top: 0.1363em;">n+1 </sub>≤ <sup style="top: -1.1448em;">α</sup>δ &lt; δ<sub style="top: 0.1363em;">n </sub>then clearly </p><p>N(C<sub style="top: 0.1363em;">α</sub>, δ) ≤ N(C<sub style="top: 0.1363em;">α</sub>, δ<sub style="top: 0.1363em;">n+1</sub>) ≤ 2<sup style="top: -0.3753em;">n+1 </sup></p><p>On the other hand every set of diameter ≤ δ can intersect at most two maximal intervals in C<sub style="top: 0.2248em;">α</sub><sup style="top: -0.3298em;">n+1</sup>, hence <br>1</p><p>N(C<sub style="top: 0.1363em;">α</sub>, δ) ≥ ·&nbsp;2<sup style="top: -0.3753em;">n </sup></p><p>2</p><p>so for δ<sub style="top: 0.1363em;">n+1 </sub>≤ δ &lt; δ<sub style="top: 0.1363em;">n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">(n − 1) log 2 </li><li style="flex:1">log N(C<sub style="top: 0.1363em;">α</sub>, δ) </li><li style="flex:1">(n + 1) log 2 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">≤</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(n + 1) log(2/(1 − α)) </li><li style="flex:1">log 1/δ </li><li style="flex:1">n log(2/(1 − α)) </li></ul><p>and so, taking δ → 0, Mdim&nbsp;C<sub style="top: 0.1364em;">α </sub>= log 2/ log(2/(1 − α)) </p><p>Proposition 3.4. Properties of Minkowski dimension: </p><p>1. Mdim A = Mdim A <br>6</p><p>2. Mdim A depends only on the induced metric on A. 3. If f : X → Y is Lipschitz then Mdim fA ≤ Mdim A, and if f is bi-Lipschitz then </p><p>Mdim fA = Mdim A. <br>Proof. By inclusion Mdim&nbsp;A ≤ Mdim A, so for the first claim we can assume that Mdim A &lt; ∞. Then&nbsp;N(A, ε) = N(A, ε) for every ε &gt; 0, because in general if A ⊆ </p><p></p><ul style="display: flex;"><li style="flex:1">S</li><li style="flex:1">S</li></ul><p></p><p>For the second claim, note that the diameter of a set depends only ont he induced </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p><sub style="top: 0.2688em;">i=1 </sub>A<sub style="top: 0.1364em;">i </sub>then A ⊆ <sub style="top: 0.2688em;">i=1 </sub>A<sub style="top: 0.1364em;">i</sub>, and if {A<sub style="top: 0.1364em;">i</sub>} is a δ-cover then so is {A<sub style="top: 0.1364em;">i</sub>}. This&nbsp;implies the claim. </p><p></p><ul style="display: flex;"><li style="flex:1">S</li><li style="flex:1">S</li></ul><p></p><p>metric, and if A ⊆ A<sub style="top: 0.1363em;">i </sub>then A ⊆ (A<sub style="top: 0.1363em;">i</sub>∩A) and |A<sub style="top: 0.1363em;">i</sub>∩A| ≤ |A<sub style="top: 0.1363em;">i</sub>|, so N(A, ε) is unchanged if we consider only covers by subsets of A. </p><p></p><ul style="display: flex;"><li style="flex:1">S</li><li style="flex:1">S</li></ul><p></p><p>Finally if A ⊆ A<sub style="top: 0.1363em;">i </sub>then f(A) ⊆ f(A<sub style="top: 0.1363em;">i</sub>), and if c is the Lipschitz constant of f then |f(E)| ≤ c|E|. Thus N(fA, cε) ≤ N(A, ε) and the claim follows. </p><p>The example of the middle-α Cantor sets demonstrates that Mankowski dimension is not a topological notion, since the sets C<sub style="top: 0.1363em;">α </sub>all have different dimensions, but for 0 &lt; α &lt; 1 they are all topologically a Cantor set and therefore homeomorphic. On the other hand the last part of the proposition shows that dimension is an invariant in the bi-Lipschitz category. Thus, </p><p>Corollary 3.5. For 1 &lt; α &lt; β &lt; 1, the sets C<sub style="top: 0.1363em;">α</sub>, C<sub style="top: 0.1481em;">β</sub>, are not bi-Lipschitz equivalent, and in particular are not C<sup style="top: -0.3299em;">1</sup>-diffeomorphic, i.e. there is no bi-Lipschitz map f : C<sub style="top: 0.1364em;">α </sub>→ C<sub style="top: 0.1481em;">β</sub>. </p><p>Next, we specialize to Euclidean space.&nbsp;First we note that, although the same topological space can have different dimensions depending on the metric, changing the norm on R<sup style="top: -0.3299em;">d </sup>does not have any effect, since the identity map is bi-Lipschitz, all norms on R<sup style="top: -0.3299em;">d </sup>being equivalent.&nbsp;Second, as we shall see next, in R<sup style="top: -0.3299em;">d </sup>one can compute the Minkowski dimension using covers by convenient families of cubes, rather than arbitrary sets.&nbsp;This is why Minkowski dimension is often called box dimension. Definition 3.6. Let b ≥ 2 be an integer. The partition of R into b-adic intervals is </p><p>k k&nbsp;+ 1 </p><p>D<sub style="top: 0.1481em;">b </sub>= {[ , <br>) : k ∈ Z} </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>The corresponding partition of R<sup style="top: -0.3299em;">d </sup>into b-adic cubes is </p><p>d</p><p>D<sub style="top: 0.2313em;">b </sub>= {I<sub style="top: 0.1363em;">1 </sub>× . . . × I<sub style="top: 0.1481em;">d </sub>: I<sub style="top: 0.1363em;">i </sub>∈ D<sub style="top: 0.1481em;">b</sub>} </p><p>(We suppress the superscript d when it is clear from the context).&nbsp;The covering number of A ⊆ R<sup style="top: -0.3298em;">d </sup>by b-adic cubes is </p><p>N(X, D<sub style="top: 0.1481em;">b</sub>) = #{D ∈ D<sub style="top: 0.1481em;">b </sub>: D ∩ X = ∅} </p><p>7</p><p>Lemma 3.7. For any integer b ≥ 2, </p><p>1</p><p>n</p><p></p><ul style="display: flex;"><li style="flex:1">Mdim X = lim </li><li style="flex:1">log N(X, D<sub style="top: 0.1481em;">b </sub>) </li></ul><p></p><p><sup style="top: -0.0781em;">n→∞ </sup>n log b </p><p>and similarly for Mdim and Mdim. </p><p>Proof. Since D ∈ D<sub style="top: 0.1482em;">b </sub>has |D| = c · b<sup style="top: -0.3299em;">−n </sup>(in fact for the norm k·k<sub style="top: 0.2688em;">∞ </sub>the constant is c = 1, </p><p>n</p><p>for other norms it depends on d), we find that </p><p>N(A, c · b<sup style="top: -0.3754em;">−n</sup>) ≤ N(A, D<sub style="top: 0.1481em;">b </sub>) </p><p>n</p><p>On the other hand every set B with |B| ≤ b<sup style="top: -0.3299em;">−n </sup>can be covered by at most 2<sup style="top: -0.3299em;">d </sup>cubes </p><p>n</p><p>D ∈ D<sub style="top: 0.1481em;">b </sub>. Hence </p><p>d<br>−n </p><p>)</p><p>n</p><p>N(A, D<sub style="top: 0.1481em;">b </sub>) ≤ 2 N(A, b </p><p>Substituting this into the limit defining Mdim, and interpolating for b<sup style="top: -0.3299em;">−n−1 </sup>≤ δ &lt; b<sup style="top: -0.3299em;">−n </sup>as in Example 3.3 (5), the lemma follows. </p><p>Example 3.8. Let E ⊆ N. The upper and lower densities of E are <br>1d(E) = lim&nbsp;sup |E ∩ {1, . . . , n}| </p><p>n</p><p>1</p><p>n→∞ </p><p>d(E) = lim&nbsp;inf |E ∩ {1, . . . , n}| </p><p>n→∞ </p><p>n</p><p>Let </p><p>∞</p><p>X</p><p>X<sub style="top: 0.1407em;">E </sub>= { </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1"><sup style="top: -0.3754em;">−n</sup>x<sub style="top: 0.1363em;">n </sub>: x<sub style="top: 0.1363em;">n </sub>= 0 if n ∈/ E and x<sub style="top: 0.1363em;">n </sub>∈ {0, 1} otherwise} </li></ul><p></p><p>n=1 </p><p>We claim that Mdim&nbsp;X<sub style="top: 0.1408em;">E </sub>= d(E) and Mdim&nbsp;X<sub style="top: 0.1407em;">E </sub>= d(E). Indeed,&nbsp;for each initial </p><p>P<sub style="top: 0.2629em;">∞ </sub></p><p>sequence x<sub style="top: 0.1363em;">1 </sub>. . . x<sub style="top: 0.1481em;">k</sub>, the set of numbers of the form&nbsp;<sub style="top: 0.2688em;">n=1 </sub>2<sup style="top: -0.3299em;">−n</sup>x<sub style="top: 0.1363em;">n </sub>consist of a single level-k dyadic interval plus one point.&nbsp;Thus the number of level-k dyadic intervals needed to cover X<sub style="top: 0.1408em;">E </sub>is, to within a factor of 2, equal to the number of sequences x<sub style="top: 0.1364em;">1 </sub>. . . x<sub style="top: 0.1481em;">k </sub>whose digits satisfy the condition in the definition of X<sub style="top: 0.1407em;">E</sub>. The&nbsp;number of such sequences is precisely 2<sup style="top: -0.3298em;">|E∩{1,...,k}|</sup>. In summary, we have found that </p><p>2<sup style="top: -0.3754em;">|E∩{1,...,n}| </sup>≤ N(X<sub style="top: 0.1407em;">E</sub>, D<sub style="top: 0.1481em;">k</sub>) ≤ 2 · 2<sup style="top: -0.3754em;">|E∩{1,...,n}| </sup></p><p>1</p><p>n</p><p>Taking logarithms and dividing by n, we see that the asymptotics of&nbsp;log N(X<sub style="top: 0.1408em;">E</sub>, D<sub style="top: 0.1481em;">k</sub>) </p><p>1</p><p>are the same as of <sub style="top: 0.3135em;">n </sub>|E ∩ {1, . . . , n}|, as claimed. <br>In particular, since one easily has sets E⊆ N with d(E) &lt; d(E) we see that the lower </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    57 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us