On TAE's Path to Fusion

On TAE's Path to Fusion

On TAE’s Path to Fusion A Private-Sector Perspective Michl Binderbauer | President & CTO | TAE Technologies Committee on aCOMMITTE Strategic ON Plan A STRATEGIC for US Burning PLAN FOR Plasma U.S. BURNING Research, PLASMA General RESEARCH Atomic, | FEBRUARY Feb 26-28, 2018 2018 1 Agenda • Concept, Motivation and History • Key Past Program Accomplishments • Current Status and Next Steps • Overall Perspective Forward – Public-Private Partnership COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 2 TAE Concept Advanced beam driven FRC • High plasma β~1 • compact and high power density • aneutronic fuel capability • indigenous kinetic particles • Tangential high-energy beam injection • large orbit ion population decouples from micro-turbulence • improved stability and transport • Simple geometry • only diagmagnetic currents • easier design and maintenance • Linear unrestricted divertor • facilitates impurity, ash and power removal COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 3 Goals, Issues and Initiatives for FRC Research FESAC TAP report (2008) & ReNeW (2009) Long-range mission • Develop compact (high-β) reactor without toroidal field coils or a central solenoid ITER era goal • Achieve stable, long-pulse keV plasmas with favorable confinement scaling Key issues • Is global stability possible at large s (a/ρi ≥ 30) with low collisionality? • What governs energy transport and can it be reduced at high temperature? • Is energy-efficient sustainment possible at large-s and with good confinement? • Theory and simulation challenges (high-β, kinetic effects, transport) Suggested possible initiatives • Build larger facility with rotating magnetic fields or neutral beam injection (NBI) • Develop comprehensive diagnostics suite (profiles, fluctuations, …) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 4 TAE’s Goals to Now Test for failure early and at lower cost while reducing most critical risks Establish beam driven high-β FRC physics test beds to • provide fast learning cycles and large experimental dataset (close to 60,000 shots) • demonstrate sustainment via Neutral Beam Injection (NBI) for >5 ms discharges (longer than critical timescales) with high repeatability • study tangential NBI and fast particle effects on stability and transport • measure scaling and study fluctuations and transport • assess potential for current drive, power balance and its implications Provide opportunity to • tightly integrate theory/modeling with experimentation • develop engineering knowhow and integration Invite collaboration to accelerate progress • Budker Institute, PPPL, UCI, UCLA, LLNL, Univ. of Pisa, Univ. of Wisconsin, Nihon Univ., Univ. of Washington, Google, Industrial partners COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 5 Past TAE Program Evolution A & B – Basic FRC core C-2 – HPF* w/ 2 guns, Ti getter C-2U – Sustainment 5+ ms n 100-800 G, 5-10 eV n 1 kG, 1 keV n 1 kG, 1 keV n ion beams, Wb ~0.1 kJ n neutral beams, Wb ~12 kJ n neutral beams, Wb ~100 kJ * HPF – High Performance FRC regime C-1 – Enhanced lifetime C-2 – HPF* w/ 2 guns, Li getter n 400 G, 10 eV n 1 kG, 1 keV n ion beams, Wb ~1 kJ n neutral beams, Wb ~20 kJ COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 6 Key Past Program Accomplishments COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 7 Global Stability Control via Edge Biasing • Active and passive bias electrodes “communicate” with FRC separatrix via scrape-off layer • Generate inward Er to counter FRC spin-up, and stabilize rotational modes (e.g. n=2) in axisymmetric way • Line-tying between FRC and plasma gun stabilizes wobble (provided that sheath resistance Bias: On/Off Plasma Gun: On/Off is low) Binderbauer, et. al, Phys. Plasmas 22, 056110 (2015) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 8 Advanced Beam Driven FRC Enabled by Fast Ions 5 • Fast ion confinement near classical limit 4 !i ~ (1-2) !icl 3 2 • Total pressure is maintained, while thermal .1 e 1 pressure is replaced by fast ion pressure, up to Measured lifetime [ms] Pfast/Pth ~ 1 0 mb20141119.ta 0 1 2 3 4 5 Classical slowing down time [ms] • Global modes are further suppressed • Lifetime increases with NBI 1.0 6 NBs 5 NBs 4 NBs 3 NBs 0.5 2 NBs 1 NB Plasma Radius 0.0 0 1 2 3 4 5 6 7 8 9 10 11 Time (ms) Binderbauer, et. al, Phys. Plasmas 22, 056110 (2015) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 9 FRC Sustainment Correlates with NBI , et., al, AIP Conf. proceedings (2016) 030003 1721, • Pulse length limited by hardware and stored energy supply (biasing, beams) Binderbauer • Flux maintained up to at least 5-5.5 ms – showcases ability to drive current M. COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 10 Driftwave Stable Core, Unstable Scrape-off layer Density fluctuation Linear dispersion (experiment)* (simulation) –1 10 0.82≤r/Rs≤0.87 FRC core 1.10≤r/Rs≤1.22 SOL 10–2 ~ n/n 10–3 10–4 0 15 30 45 60 75 Schmitz, et. al, Nat. Comm. 7, 13860 (2016) 13860 7, Comm. Nat. al, et. Schmitz, kζ ρs kζ = n/R κ=R0/Ln (normalized inverse density scale-length) ρs=√((Ti+Te)/mi) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 11 Critical SOL Gradient Controls Onset of Fluctuations Density fluctuation Linear dispersion (experiment)* (simulation) r/Rs ~ 1.15 (SOL) r/Rs = 0.95 0.04 (Core) r/Rs ~ 0.85 kθρs ~ 5–20 24, 082512 (2017) ñ/n 0.02 0 2 3 4 R/Ln Lau, et. al, Phys. Plasmas (R0/Cs = 2.5 μs) R/Ln crit R/Ln crit κ=R0/Ln (normalized inverse density scale-length) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 12 19 –3 ne (10 m ) 0.6 2.3 Fluctuation Suppression via 1.9 0.4 0.2 1.5 1.1 (m) 0 E×B Sheared Flow r 0.2 0.7 0.4 0.4 R Rs 0.6 0 0.14 • Strong E×B shearing rate due to plasma (au) 0.07 r/Rs=1.1 ñ/n r/Rs=0.9 gun biasing 0 6 n R/Ln crit r/Rs=1.1 4 R/L 2 • Sheared E×B flow upshifts critical r/Rs=0.9 gradient and reduces turbulence via 1.0 ad/s) r 0.5 eddy shearing/decorrelation 6 (10 D , B 0 x E r (cm) f • Radial transport barrier at/outside the 3.0 –0.5 separatrix 1.5 1.5 1.0 0 (cm) r –10 0 10 (2016) 13860 7, Comm. Nat. al, et. Schmitz, 0.5 r-Rs (cm) 0 0 0.5 1.0 1.5 2.0 2.5 Time (ms) COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 13 Dramatically Improved Confinement CP10.00064 (2016) CP10.00064 . Am. Phys. Soc. 61, 61, Soc. Phys. Am. , et., al, Phys. Plasmas (2015) 056110 22, PBull • ~10× improved particle • Strong positive correlation between Te Binderbauer confinement and τEe Trask,et. al, • Good fit – ⌧ T 2.3 Ee / e COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 14 Past TAE Program Evolution • Fast ion confinement is close to classical • Quiescent Core • Stabilized by FLR effects, magnetic well, fast electron parallel dynamics • Inverted wavenumber spectrum – evidence of FLR stabilization of ion modes – consistent with near-classical core thermal ion transport • Some electron-scale turbulence – anomalous electron transport (χe < 20 χcl) • τEe exhibits positive Te power dependence • SOL/Edge Fluctuations • Fluctuations peak outbound near separatrix, with radial outbound convection • Exponentially decaying gyro-scale turbulence up to kθρs < 50 • Critical density gradient controlls onset of density fluctuations • Core and SOL coupling – SOL turbulence affects FRC confinement • Evidence of localized flow shear at separatrix creating thermal barrier COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 15 Current Status and Next Steps COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 16 TAE progress towards fusion Evolutionary sequence of platforms TAE’s current Major development platforms integrate then machine best design • First plasma July 2017 • incremental bases for rapid innovation • One year construction • On time, on Copernicus entering phased sequence of budget reactor performance experiments C-2U Plasma Sustainment A, B, C-1 200’ Early development and C-2 science First full-scale machine 100’ 70’ Norman Copernicus Reactor plasma performance 70’ (aka C-2W) Collisionless Scaling 1998 – 2000s 2009-2012 2013-2015 2017-2018 2019+ COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 17 Norman Goals Explore beam driven FRCs at 10x stored energy compared to C-2U • Principal physics focus on • scrape off layer and divertor behavior • ramp-up characteristics • transport regimes • Specific programmatic goals • demonstrate ramp-up and sustainment for times well in excess of characteristic confinement and wall times • explore energy confinement scaling over broad range of parameters • core and edge confinement scaling and coupling • consolidated picture between theory, simulation and experiment • develop and demonstrate first order active plasma control COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 18 Norman (aka C-2W) TAE’s 5th generation machine Magnetic Field 0.1–0.3 T Plasma dimensions – rs , Ls 0.4, 3 m 19 -3 Density – ne 3×10 m COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 19 Temperature – Ti ,Te 1-2, 0.2-1 keV Norman – Neutral Beam System Norman Norman C-2U Phase 1 Phase 2 Beam Energy, keV 15 15 15/15-40 Total Power 10 13 21 # of Injectors 6 8 4/4 Pulse, ms 8 30 30 Ion current per source, A 130 130 130 • Centered/angled/tangential neutral-beam injection • angle adjustable in range of 15°–25° • injection in ion-diamagnetic (co-current) direction • High current with low/tunable beam energy • reduces peripheral fast-ion losses • increases core heating / effective current drive • rapidly establishes dominant fast-ion pressure for ramp-up COMMITTE ON A STRATEGIC PLAN FOR U.S.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us