Design and Development of BTI Model and 3D Ingaas HEMT-Based SRAM for Reliable and Secure Internet of Things Application

Design and Development of BTI Model and 3D Ingaas HEMT-Based SRAM for Reliable and Secure Internet of Things Application

electronics Article Design and Development of BTI Model and 3D InGaAs HEMT-Based SRAM for Reliable and Secure Internet of Things Application Nandakishor Yadav †,*, Mahmoud Alashi and Kyuwon Ken Choi † Department of Electrical and Computer Engineering, 3301 South Dearborn Street, Siegel Hall, Illinois Institute of Technology, Chicago, IL 60616, USA; [email protected] (M.A.); [email protected] (K.K.C.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 25 January 2020; Accepted: 6 March 2020; Published: 11 March 2020 Abstract: It is broadly accepted that the silicon-based CMOS has touched its scaling limits and alternative substrate materials are needed for future technology nodes. An Indium-Gallium-Arsenide (InGaAs)-based device is well situated for further technology nodes. This material also has better mobility of the electrons and holes for the high performance and real-time system design. The improved mobility helps to increase the operating frequency of the device which is useful for Internet of Things (IoT) applications. However, InGaAs-based High Electron Mobility Transistors (HEMT) limits the reliability of the device due to the presence of dangling bonds at the channel–gate insulator interfaces. Weak dangling-bonds get broken under electric stress, and positive hydrogen atoms are trapped into the oxide. This charge trapping depends on the material parameters and device geometry. In this paper, the existing Bias-Temperature-Instability (BTI) model is modified based on the material parameters and device geometry. Charge trapping and annealing constants are the most critical BTI model parameters that are modeled and evaluated based on different HEMT material parameters. The proposed model was compared to experimental and TCAD simulation results. The proposed model has been used for lifetime prediction of the InGaAs HEMT-based Static Random-Access Memory (SRAM) cell because it is used to store and process the information in the IoT applications. Keywords: Internet of Things (IoT); autonomous vehicle; HEMT; FinFET; BTI; NBTI; PBTI; charge-trapping; reliability 1. Introduction Wireless sensor networks (WSNs) have been extensively used as devices for information collection and decision making. These capabilities have expanded the scope of applications of WSNs in many fields including Internet of Things (IoT), healthcare, search and rescue where sensor nodes are deployed at remote locations and under extreme conditions [1]. Power-consumption is one of the important challenges that restrict the efficiency of WSN since sensor nodes are battery operated. Hence, life time prediction of the VLSI chips used for WSN circuits has become a necessity. Speed is another design requirement for WSN circuits which are required to operate at high frequencies. Since MOSFET no longer supports high-frequency operation, High Electron Mobility Transistors (HEMT) provide an alternative solution to achieve high-performance circuit design for WSNs [2]. HEMT has been used to design satellite receivers and sensor nodes [3,4]. Some compound semiconductor materials are used to increase the operating frequency of HEMT such as Gallium-Nitride (GaN) and Indium-Gallium-Arsenide (InGaAs). In InGaAs-based HEMT, the indium material provides Electronics 2020, 9, 469; doi:10.3390/electronics9030469 www.mdpi.com/journal/electronics Electronics 2020, 9, 469 2 of 15 extra strain to increase the mobility of electrons and holes. These semiconductor devices use high-k dielectric materials in order to establish strong insulation of the gate terminal. This helps to reduce the gate leakage current for the low power circuit design. Unlike the conventional bulk-based MOSFET, the high-k dielectric materials in HEMT establish a weak interafce with the bulk material. Therefore, more dangling bonds are generated in HEMT than MOSFET in order to strengthen the contact at the bulk dielectric interface. (SiO2/Si)[5]. When HEMT devices are operated under electrical stress, the dangling-bonds get broken, and positive hydrogen atoms get trapped inside the gate-insulator, which increases the threshold voltage of the HEMT. Consequently, the HEMT threshold voltage increases which causes a decrease in the operating frequency. Such effects are further escalated at higher temperatures due to the Bias-Temperature-Instability (BTI) which is one of the main reliability degradation sources in HEMT. Other reliability degradation sources include Time-Dependent Dielectric Breakdown (TDDB) and Hot Carrier Injection (HCI) [6]. Therefore, an efficient HEMT-based circuit design should carefully consider the effects of those sources. Due to the complexity of developing a physical VLSI chip, CAD tools are used to model and simulate the behavior of VLSI circuits. Models should incorporate all the reliability degradation sources in order to obtain an accurate simulation of the VLSI circuit under their effects. The Reaction–Diffusion (RD) model [7] can be used to model the increase in the threshold voltage of the HEMT. The RD model is based on using electrochemical reactions and activation energies to represent the interface state [7]. Reliability models should also account for the various device parameters and geometrical properties and therefore they should be modified accordingly based on the device under test. The primary components of an IoT system are a data converter, a transmitter, and a receiver [1]. These components can be designed using logic circuits and storing elements such as Static Random-Access Memory (SRAM) [8]. Hence, the proposed reliability model for HEMT can be tested on SRAM. SRAM is considered to be the fundamental storing element occupying more than 80% of the on-chip area of the processor. Since HEMT is used for high-frequency SRAM design, the prediction of its lifetime becomes necessary [9]. In this paper, an InGaAs-based SRAM is designed and analyzed to evaluate its stability under BTI stress. Based on this analysis, a BTI model for SRAM lifetime prediction has been proposed, and further, it is used for an SRAM circuit simulation using SystemVerilog-based modeling and the HSPICE EDA tool. The highlights of the proposed works are as follows: 1. Design and simulation of the InGaAs-based HEMT; 2. Calibration of simulation models and HEMT with experimental data; 3. Proposed a PBTI/NBTI model for HEMT; 4. Proposed model is modified according to the material parameters; 5. Use of proposed model for 6T SRAM cell design. The rest of the paper is organized as follows: In Section2, the state-of-the-art BTI models are discussed. In Section3, the proposed InGaAs-based HEMT design is discussed. In Section4, simulation setup, model calibration with experimental results, and design are proposed. In Section5, the 6T SRAM cell is briefly described and simulation results are discussed. In Section6, a spice equivalent BTI model for the InGaAs-based HEMT is discussed. In Section7, the simulation results of the proposed model are discussed. Section8 concludes the work. 2. State-Of-The-Art BTI Models It was already mentioned in a previous study, that the trapping of the charge carrier in the gate insulator due to the NBTI/PBTI can be defined by the RD-model [7]. Due to the unclear nature of NBTI/PBTI, more realistic RD-models that better incorporate the effects of those sources have been proposed. Kufluoglu et al. [10] has proposed a model where the transistor structure and scaling-based compact NBTI model were included. It shows similar characteristics with the numerical simulation results despite the superiority of this model to all other kinds of transistor structures, the model parameters were not experimentally determined. Furthermore, the electron/hole Electronics 2020, 9, 469 3 of 15 generation and annealing parameters were used but the model did not include the device structure and experimental data. Another RD-based model has been proposed by Islam et al. [11,12], which showed the passivation/depassivation effects of the Si-H bond by using the initial charge density, electron/hole generation constant, and annealing constant. This model, however, did not show the geometrical effect on NBTI/PBTI. For circuit simulation purposes, this model was modified and applied for 65 nm CMOS technology [13]. When BTI is induced, the trap charge density was found to be dependent on the diffusion constant. Therefore, the RD model is further modified to include the diffusion length. This model used the default values for the hole/electron generation and annealing constant [14]. The same model was further modified for silicon body tied FinFET [15]. Some statistical reliability models were proposed for FinFET and SRAM cells and used to investigate the NBTI effects [16]. An NBTI framework for 20 nm node devices was presented by Mishra et al. [17]. The stress generated by BTI is found to be more significant than PBTI stress. NBTI reduces the inversion charges and degrades the electron and hole mobility. It is due to the Coulomb scattering and depends on the applied gate voltage, temperature, and stress time [16,17]. In these works, they also assumed that the generated interface state is designing a substrate gate interface bond with their energy distribution. In this work, we have modified the existing model given by Kufluoglu et al. [10] and proposed a new geometry-based BTI model device for N-type InGaAs HEMT (FinFET). The electron–hole generation constant and different parameter values are calculated for the InGaAs − Al2O3 interface. Due to the model dependency on the hydrogen diffusion consistent, this constant has been calculated for the InGaAs − Al2O3 interface. Further, the effectiveness of the proposed model has been tested with the TCAD simulator, and results are verified with state-of-the-art experimental results. 3. Proposed InGaAs HEMT Figure1 shows the architecture of the InGaAs-based HEMT [18]. The real physical device operation was simulated using a process equivalent TCAD simulation [19]. To design In0.53Ga0.47 As − Al2O3 interface, InP was deposited over the insulator, and over it, an InGaAs layer was deposited for device formation.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us