Finite Element Methods & Model Reductions

Finite Element Methods & Model Reductions

Finite Element Methods & Model Reductions by J. Monnier ([email protected]) INSA Toulouse, Applied Mathematics department. March 2021 * Variational forms - weak solutions - mathematical analysis Finite Element methods Reduced models Models with weak constraints * Full content of the course with exercises and programming practicals: please consult the INSA Moodle page. 1 (L) A coarse FE mesh in Earth Sciences. (R) FE analysis of an engine: Von Mises stress values. Images source: Contents 1 Analysis of Elliptic Problems: Variational Forms, Weak Solutions 5 1.1 Introduction . 5 1.2 From the classical formulation to the weak formulation . 6 1.2.1 Domain regularity and basic recalls . 6 1.2.2 Weak formulation in the classical spaces Ck(Ω)¯ .............................. 8 1.2.3 Recalls of functional analysis . 9 1.2.4 Weak formulation in the Sobolev spaces and Lax-Milgram’s theory . 11 1.3 The Laplace-Poisson equation: mathematical analysis . 14 1.3.1 The Dirichlet boundary conditions case . 14 1.3.1.1 The model . 14 1.3.1.2 From the classical to the variational form . 14 1.3.1.3 Well-posedness of the model . 15 1.3.1.4 Equivalence of the variational form with the original equation . 15 1.3.1.5 Symmetric case: equivalence with the minimun of energy . 16 1.3.1.6 The non homogeneous Dirichlet condition case . 17 1.3.2 The Neumann boundary conditions case . 18 1.3.2.1 The weak formulation . 18 1.3.2.2 Well posedness (existence - uniqueness) . 18 1.3.2.3 Equivalence with the equations of the BVP . 18 1.3.2.4 Energy estimation & stability inequality . 19 1.3.3 On the regularity of the solution . 20 1.3.3.1 Regular data - regular solution . 20 1.3.3.2 Typical singularity origins . 20 1.3.4 The transmission boundary condition . 22 2 Finite Element Methods 23 2.1 Fundamentals . 24 2.1.1 Internal approximation & discrete weak formulation . 24 2.1.2 On FE meshes . 26 2.1.3 The (linear) algebraic system . 28 2.1.4 A-priori error estimation . 29 2.1.5 Building up a good FE space Vh ...................................... 29 2.1.5.1 On the Galerkin method . 29 2.1.5.2 Required features of any FE space Vh .............................. 30 2.2 The Pk-Lagrange FE . 31 2.2.1 The P1-Lagrange FE in 1D . 31 2.2.2 The Pk-Lagrange FE in nD......................................... 34 2.2.2.1 Triangulation of Ω ......................................... 34 2.2.2.2 The FE space Vh & basis functions . 34 2.2.2.3 The classical higher order Pk-Lagrange FE (k = 2; 3) ..................... 35 2.3 FE code kernel: the assembly algorithm . 36 2.3.1 The assembly algorithm & elementary matrices . 36 2.3.1.1 The linear system coefficients to be computed . 36 2.3.1.2 The assembly algorithm . 38 2.3.1.3 Data structures required from the mesh (resumed) . 38 2 CONTENTS 3 2.3.2 How to introduce the Dirichlet boundary conditions ? . 40 2.3.3 Change of variables onto the reference element K^ ............................. 41 2.3.3.1 The geometric change of variable onto K^ ............................ 41 2.3.3.2 Isoparametric FE . 42 2.3.4 On triangles & tetrahedra (n-simplexes): barycentric coordinates . 43 2.3.4.1 The barycentric coordinates . 43 2.3.4.2 Lattices . 43 2.4 Convergence and error estimation . 44 2.4.1 Interpolation operator & error . 44 2.4.2 FE error estimation in the energy space V ................................. 45 2.4.2.1 The general a-priori error estimation . 45 2.4.2.2 Typical cases . 45 2.4.2.3 On the numerical integration errors . 46 2.4.3 Measuring the convergence order: code validation . 46 2.4.4 On non optimal FE scheme order: presence of singularity . 48 2.4.5 Error estimation in norm L2(Ω) ...................................... 48 2.5 Hermite FE . 50 2.6 Non-linear cases: linearization . 51 2.7 Advective term stabilization . 53 2.7.1 Advective(-diffusive) equations . 53 2.7.2 Standard FE scheme = centered Finite Difference scheme . 54 2.7.3 1D case: explicit solutions - instabilities . 55 2.7.4 Stabilization techniques: SD, SUPG, GLS . 57 3 Projection-Based Reduced Models 60 3.1 Fundamentals . 60 3.1.1 Basic principles . 61 M N 3.1.2 Solutions manifolds & the Kolmogorov -width . 62 3.2 The POD-Galerkin based reduction method . 63 3.2.1 Construction of the Reduced Basis . 63 3.2.1.1 Definition of the snapshot space VM ............................... 63 3.2.1.2 Construction of the reduced space VP OD ............................ 63 3.2.1.3 Relationship between POD and Singular Value Decomposition (SVD) . 64 3.2.1.4 Change of basis: from the snapshot space VM to the FE space Vh . 65 3.2.2 An error estimation . 66 3.2.3 The POD algorithm . 67 3.2.4 Advantages & disadvantages of the POD-based reduction method . 67 3.2.4.1 Summary of the method . 67 3.2.4.2 Advantages & disadvantages of the method . 67 3.2.4.3 Non linear systems: interpolation may be made by an Artificial Neural Network (ANN) . 69 3.2.4.4 An alternative method: the greedy algorithm . 69 3.3 Model reduction in Python & numerical example(s) . 69 3.3.1 Python libraries . 69 3.3.2 Numerical example(s) . 70 4 Weak constraint(s): mixed formulations 72 4.1 The (Navier-)Stokes fluid flow model . 72 4.1.1 The flow model(s) . 72 4.1.2 Formulation in the divergence free space Vdiv ............................... 73 4.1.3 Formulation in variables (u; p): a mixed formulation . 73 4.1.4 The incompressibility constraint: p is the Lagrangian multiplier . 74 4.1.5 Discrete form & linear system . 75 4.1.6 On the Ladyzhenskaya–Babuška–Brezzi (LBB) inf-sup condition . 77 4.2 Mixed formulations: other examples . 78 4.2.1 General form & origins . 78 4.2.2 Dirichlet boundary condition . 79 4.2.3 Non-penetration boundary condition . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    93 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us