The Crystal Structure and Thermal Expansion Of

The Crystal Structure and Thermal Expansion Of

Canadian Mineralogist Yol.29, pp. 385-390(1991) THECRYSTAL STRUCTURE AND THERMALEXPANSION OF TUGTUPITE,Nar[AlrBerSirOro]Cl, ISHMAEL HASSAN* ANDH. DOUGLAS GRUNDY Deportmentof Geologt,McMoster University, Hamilton, Ontario L8S4MI ABSTRACT INrnooucrtoN The crystal structure of tugtupite, ideally Tugtupite is tetragonaland has the idealizedfor- Nas[Al2Be2siso2.p,]C12, has been refined in spacegroup .I4 mula Nas(Al2BqSlO2)Cl2 (Dand 1966, Sdensen el to an R index of 0.023for 621 observedreflections meas- ol. l97l). The structure of tugtupite is isotypic with ured on an automated single-crystal four-circle X-ray that of sodalite(cubic), as is that of mineralsof the diffractometer using MoKo radiation. The framework 7 helvite group. The tugtupite framework may be (T representsAl3*, Bd+, and Sia+) are fully cations regardedas intermediatein composition betweenthe this order lowers the cubic symmetry of many ordered, and (AloSkOdt hel- sodalite-group minerals to tetragonal symmetry for tugtu- framework of sodalite and that of of tug- pite, a sodalite-groupmi^neral. The "sodalite" cagein tug- vite (Be6Si6O2/12-.The tetragonal symmetry tupite contains[Na0.611r" clusters. Large Si-O-Be angles tupite is the result of Z-cation ordering (Zrepresents occur in this structure; smaller Si-O-Be angles occur in Al3+, Bd+, and Sia+). helvite-group minerals, because the cages. contain Dafi (L966)determined the spacegroup /? for + [(Mn,Fe,Zn)a.S]6 clusters,whose large effective charge tugtupite by utilizing precession and Weissenberg accountsfor the smaller angles.The thermal expansionfor photographs, and the structure w€rsrefined with film tugtupite is modeled using the DtrS program; the expan- data and the isotypic relationship with the sodalite rotatrons of the 704 tetra- sion is controlled mainly by stnrcture. Interest in tugtupite arisesprimarily from hedra, which are mainly causedby the expansion of Na- result from a fra- Cl bonds and nearly constant Na-O bonds. the detailed structural effects that mework that consistsof three different T cations. Keywords: tuglupite, crystal structure, thermal expansion, In this study, we set out to refine the structure of sodalitegroup, helvite group. tugtupite to obtain better structural parametersfor comparison with structural data for sodalite- and SoMMAIRE helvite-group minerals (Hassan & Grundy 1983' 1984,1985, 1989, 1991, Hassan el a/. 1985).This Nous avons affin6 la structure cristalline de la tuglupite, comDarisonleads to an evaluationof the structural dont la formule id6ale est Na6[Al2Be2SisO2a]C12,dans le effects that arise from different 7 catidns, interstitial groupe .I4 jusqu'i un residu R de 0.023 en utilisant spatral cation (Na+, Mn2+, Fd+, Zrf+), and anions (cl-, 621 r€flexions observ€es(diffractombtre automatisd,rayon- * * OH-, H2O). An opportunity also ari$esto test nement Mo,lfa). Les cations 7 de la trame (Al' , Bez et S?, Sia+) sont complbtementordonn€s. C'est ce degrdd'ordre the applicability of the d-p zrbonding model to the qui r€duit la symdtrie cubique de plusieurs membres de la sodalite-groupminerals (e.9., Cruickshank 1961, famille de la sodalite comme la tugtupite d une symdtrie Brown et al. 1969,Gibbs er ol. 1972).The thermal t6tragonale. La cagetypique de la sodalite contient, dans expansionof tugtupite also is rationalizedin terms la tugtupite, un groupement[Nan.gq3+. Les anglesSi- of its crystal structure, and the mechanismof expan- O-Be sont grands dansla tugtupite; ils sont plus petits dans sion is comparedto that in sodalite-groupminerals les mindrauxdu groupe de la helvite parceque le groupe- (Hassan& Grundy 1984). ment [(Mn,Fe,Zn)0.516+de la cagepossbde une charge effectiveplus 6levee.L'expansion thermiquepeut Otrerepro- ExPsnttvlrNTal- duite par le logiciel DlS. L'expansion serait due surtout rotation des tdtrabdres IOa, d€pendlargement de h la eui in inves- l'expansion desliarsons Na-Cl, la longueur desliaisons Na- The specimenof red tugtupite used this O derneurant d peu prbs constante. tigation is from Ilimaussaq, Narssaq Kommune, South Greenland(Royal Ontario Museum #M3nn). (Traduit par la R6daction) The chemicalcomposition (Table l) is taken from Dand (196Obecause both samplesare from the same Mots-clds: tugtupite, structure cristalline, expansion ther- locality; we assumethat the composition of Dand mique, famille de la sodalite, famille de la helvite. (1966) is repre$entative of our sample. Cell parameters,determined by least-squaresrefinement *Present address: lnstitute for Materials Research, of fifteen high-angle reflections automatically cen- McMaster University, Hamilton, Ontario L8S 4Ml. tered on an automated four-circle single-crystal X- 385 386 THE CANADIAN MINERALOGIST ray diffractometer, are presentedin Table l, together Reflectionsallowable in spacegroup /4 (i,e., h -r with other information pertaining to X-ray data col- k + I = 2n) were collected from two octanls of lection and refinement. reciprocal spaceto a maximum 20 of 65o. A total The intensity data were collected from a cleavage of l4l3 intensilieswere measlued to give a data set fragment mounted on a Nicolet P3 diffractometer. of 647unique reflections, of which 621were classed as observed(Table l). The data were correctedfor Lorentz, polarization, background effects, and TABLE1 . oHEMICAL@MposmoHl . cRysrlt oatn2. lt.to sphericalabsorption (Table 1). All crystallographic INFOFMA'IIONON DATACOIIECTION FOR TlJGTUPITE calculationswere made using the XRAY76 Crystal- Oddo Un % Cofl @rd6rnsr Mb€lall@ lographic Programs (Stewart 1976). Ar2% 11.15 Al 2.03 a(& &640(1) STRUCTURE RSTTNBN4SNT 902 51.58 Sl 7.s c(A) 8,873(1) B4 5.40 Bs 2.@ v 63) Initially, the positional parametersand isotropic N%o 6.52 Na 7.e DerEfry€lc. Gmj Y K2O o.12 K 0.02 Cryelsbs (m) o.iu,o.,o temperature-factorsof Dand were used, including MgO O.m Mg 0.05 xo26 those for (fully ordered)Al, Be, and Si atorns,and g'7.ao 1.$ fr(m-]) e.5o atomic scattering factors for neutral atoms were s _0.s? s 0.@ gR o^ taken from Cromer & Mann (1968).A full-matrix 101.58 lvladnm 29 650 least-squaresrefinement was made by varying the o-ct,s l,9g 0< h,k,t3 13 atomic positions, isotropic temperature-factors,and Total .g!9 Tolalm. ot inemltlss No.of@huci*doE A7 Chqnlel Fomula No. otnonsq!tu lFol>3d lFl el rABtE 4. rN'rERAToMrcDrsrANcEs (A), ANGLES AND u8€d h retr|mnl Fhot'R 0.023 e ), VALENCESUMS (v.u.) FOF IUGTUPm N%t&Bs23lso2ilCt2 FbEl 4{ 0.030 'Ohemlcalarulysb trom Da|p (lS). AlO4Tstrah€dron B€O4 TstEh€dron lSpae qrcuprA; Z - 1; Radmon/Mshrctrdtr - Mo/C; Mot{r - 0.71069A Af-o3 4\ 1.748'(21 Bo-O2 4x 1.601(2) -:11rol -lr"l)p Fol;'\ - Ew(lFol- tFcl)2/:wlFol2l%,w - r. o3o3 4x 2.845(3) Q2-O2 4x 2.633(3) ln-Bas€d on Al + Bo + Sl = 120 2x 2a72p't 2x 2f,29) Mean L& Mean ?,6 os.Al€34x 109.0(1) O2-B+O2 4x 107.7(1) 2x 110-5(11 2x 113.2(1') TABLE2. POSMONALOCCIJPANCY, AND ISOTROPTC IHERMAL Moan 1495 Msan l_095 pnnauEreRs62xro1 SlO4Tofah€dron !,laCoordlrdlon Aom Sne Oe. x ubo sf€1 1.u4(4 Na€l 2.707(11 €1* 1.U7(2) 2.370(3) A 2(d) 1.0 o 1/2 3/4 76(41 -o2 1.581(2) -o2 2.3orl(3) Bo 2(cl 1.0 o 1/2 114 98(14) €3 1.6@(2) -o2. 2.603(3) sl s(s) r.0 0.0127(1, 0.2533(1) 0.4958(r) 74(1', Moan l.620 o3 2.306(3) 01 8(s) 1.0 0.1504(3) 0.1341t(2) 0.u17(2) 1A@'l o1€1r 2.dt2(31 ol-Nao 115.2(1) '1.0 02 8(sl 0.un(21 0.0385(3) 0.6488(2) 119(4) a2 2.587(31 a2 110.6(1) @ 8(s) 1.0 o.4a(4 0.1486(2) 0.132(3) 120(4) €s 2.640(3) -o3 98.0(1) Na 8(S) 1.0 0.15dt(2) 0..t972(2' 0.1818(2) 188(3) o1.€2 2.637(3) o2-Na-ct 12,-8(11 O 2(a) 1.000 o 234(3) 03 2.601(3) -o3 se.5(1) o2-o3 2.723F) olNa-cl 106.1(1) Mean zW BdiglngAngles ol€t€1r 108.6(1) sr€l€r 140.8(2) T BLEs. ANrsorRoptcTEMpERAluRFFAcronsl6 ro! 42 106.7(1) SlO2-Be 143.6(1) 03 108.5(1) sr€$Ar 135.30) Alom U1.t u2 ugg utz u.t3 ua o1.€to2 109.5(1) T-Tdlslanc6 o3 106.0(1) sl-Ar 3.100(1) AI 73(5) 7S 74(81 0 00 o2€l€3 117.2(21 sr+r 3.105(11 BS 86(18) 86 ra(34) 0 00 Msan l_09,4 slBs 3.051(1) sl 71(31 63(3) 86(3) -2(21 -2(3) "3(3) ol 126(e) 116(e) 128{e) 8n 10(8) 1c4 Bond-t,algncssums (v.u.) Al=4x0.7@ =3.076 02 107(8) 119(8) 132(e) -3(6) -35(8) 4(8) Bg=4x0.5@ =2.035 @ 112(81 114(8) 135(e) -1(6) 6f4 38(s) Sl - 0.947+0.940+1.18+1.041 = 4.051 Na zffjrI 160(61 1$(6) 7(5) 24(5) 12(5) tla = 0.25+0.216+0.269f0.115$0.201= 1.041 2n(41 244Q1 0 00 Ol = 0.947+0.91O10.216 .2.l(rll 02 - 1.123{0.509+0.259+0.115 = 2.@6 03 = '|.041+0.769+0.20 1 tUU- up1-zr2i.lr.,tl+upf +Uof +zu.,ltk+2uftht+2uztlll THE CRYSTAL STRUCTURE OF TUGTUPITE 387 , l-or' c Frc. l. Stereoscopicprojection of the framework of tugtupite showingthe "sodalite" cageand the ordering of the Tcations.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us