Ecosystem Services Are the Benefits People Obtain from Ecosystems

Ecosystem Services Are the Benefits People Obtain from Ecosystems

2 Ecosystems and Their Services EXECUTIVE SUMMARY An ecosystem is a dynamic complex of plant, animal, and microorganism com- munities and the nonliving environment, interacting as a functional unit. Hu- mans are an integral part of ecosystems. A well-defined ecosystem has strong interactions among its components and weak interactions across its boundaries. A useful ecosystem boundary is the place where a number of discontinuities coincide, for instance in the distribu- tion of organisms, soil types, drainage basins, or depth in a water body. At a larger scale, regional and even globally distributed ecosystems can be evalu- ated based on a commonality of basic structural units. Ecosystem services are the benefits people obtain from ecosystems. These include provisioning services such as food and water; regulating services such as flood and disease control; cultural services such as spiritual, recreational, and cultural benefits; and supporting services, such as nutrient cycling, that maintain the conditions for life on Earth. Biodiversity is the variability among living organisms. It includes diversity within and among species and diversity within and among ecosystems. Biodiversity is the source of many ecosystem goods, such as food and genetic resources, and changes in biodiversity can influence the supply of ecosystem services. People seek many services from ecosystems and thus perceive the condition of an ecosystem in relation to its ability to provide desired services. The ability of ecosystems to deliver services can be assessed by a variety of qualitative and quantitative methods. An assessment of the condition of ecosystems, the provision of services, and their relation to human well-being requires an integrated approach. This en- ables a decision process to determine which service or set of services is val- ued most highly and how to develop approaches to maintain services by managing the system sustainably. Introduction Millions of species populate Earth. The vast majority gain energy to sup- port their metabolism either directly from the sun, in the case of plants, or, in the case of animals and microbes, from other organisms through feeding on plants, predation, parasitism, or decomposition. In the pursuit of life and through their capacity to reproduce, organisms use energy, wa- 49 MA_CF-49-70.pmd 49 7/9/2003, 6:19 AM 50 Ecosystems and Human Well-being: A Framework for Assessment ter, and nutrients. Terrestrial plants obtain water principally from soil, while animals get it mainly from free-standing water in the environment or from their food. Plants obtain most of their nutrients from the soil or water, while animals tend to derive their nutrients from other organisms. Microorganisms are the most versatile, obtaining nutrients from soil, wa- ter, their food, or other organisms. Organisms interact with one another in many ways, including competitive, predatory, parasitic, and facilitative ways, such as pollination, seed dispersal, and the provision of habitat. These fundamental linkages among organisms and their physical and biological environment constitute an interacting and ever-changing sys- tem that is known as an ecosystem. Humans are a component of these ecosystems. Indeed, in many regions they are the dominant organism. Whether dominant or not, however, humans depend on ecosystem prop- erties and on the network of interactions among organisms and within and among ecosystems for sustenance, just like all other species. As organisms interact with each other and their physical environment, they produce, acquire, or decompose biomass and the carbon-based or or- ganic compounds associated with it. They also move minerals from the wa- ter, sediment, and soil into and among organisms, and back again into the physical environment. Terrestrial plants also transport water from the soil into the atmosphere. In performing these functions, they provide materials to humans in the form of food, fiber, and building materials and they con- tribute to the regulation of soil, air, and water quality. These relationships sound simple in general outline, but they are in fact enormously complex, since each species has unique requirements for life and each species interacts with both the physical and the biological environment. Recent perturbations, driven principally by human activi- ties, have added even greater complexity by changing, to a large degree, the nature of those environments. Ecosystem Boundaries and Categories Although the notion of an ecosystem is ancient, ecosystems first became a unit of study less than a century ago, when Arthur Tansley provided an initial scientific conceptualization in 1935 (Tansley 1935) and Raymond Lindeman did the first quantitative study in an ecosystem context in the early 1940s (Lindeman 1942). The first textbook built on the ecosystem concept, written by Eugene Odum, was published in 1953 (Odum 1953). Thus the ecosystem concept, so central to understanding the nature of life on Earth, is actually a relatively new research and management approach. MA_CF-49-70.pmd 50 7/9/2003, 6:19 AM Ecosystems and Their Services 51 Tansley’s formulation of an ecosystem included “not only the organ- ism-complex, but also the whole complex of physical factors forming what we call the environment” (Tansley 1935:299). He noted that ecosystems “are of the most varied kinds and sizes.” The main identifying feature of an ecosystem is that it is indeed a system; its location or size is important, but secondary. Following Tansley and subsequent developments, we chose to use the definition of an ecosystem adopted by the Convention on Biological Di- versity (CBD): “a dynamic complex of plant, animal and micro-organism communities and their nonliving environment interacting as a functional unit” (United Nations 1992:Article 2). Biodiversity and ecosystems are closely related concepts. Biodiversity is defined by the CBD as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosys- tems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems” (United Na- tions 1992:Article 2). Diversity thus is a structural feature of ecosystems, and the variability among ecosystems is an element of biodiversity. The parties to the convention have endorsed the “ecosystem approach” as their primary framework for action. (See Box 2.1.) For analysis and assessment, it is important to adopt a pragmatic view of ecosystem boundaries, depending on the questions being asked. In one sense, the entire biosphere of Earth is an ecosystem since the elements interact. At a smaller scale, the guiding principle is that a well-defined ecosystem has strong interactions among its components and weak interactions across its boundaries. (See also Chapter 5.) A practical approach to the spatial de- limitation of an ecosystem is to build up a series of overlays of significant factors, mapping the location of discontinuities, such as in the distribution of organisms, the biophysical environment (soil types, drainage basins, depth in a water body), and spatial interactions (home ranges, migration patterns, fluxes of matter). A useful ecosystem boundary is the place where a number of these relative discontinuities coincide. At a larger scale, regional and even globally distributed ecosystems can be evaluated based on the com- monality of basic structural units. We use such a framework in the MA for the global analysis of ecosystem properties and changes. The global assessment being undertaken by the MA is based on 10 categories: marine, coastal, inland water, forest, dryland, island, moun- tain, polar, cultivated, and urban. (See Box 2.2.) These categories are not ecosystems themselves, but each contains a number of ecosystems. The MA reporting categories are not mutually exclusive: their boundaries can MA_CF-49-70.pmd 51 7/9/2003, 6:19 AM 52 Ecosystems and Human Well-being: A Framework for Assessment BOX 2.1 The Ecosystem Approach: A Bridge Between the Environment and Human Well-being The concept of an ecosystem provides a valuable framework for analyzing and act- ing on the linkages between people and their environment. For that reason, the ecosystem approach has been endorsed by the Convention on Biological Diversity (CBD) and the Millennium Ecosystem Assessment (MA) conceptual framework is entirely consistent with this approach. The CBD defines the ecosystem approach as follows: The Ecosystem Approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustain- able use in an equitable way. Thus, the application of the ecosystem approach will help to reach a balance of the three objectives of the Con- vention: conservation; sustainable use; and the fair and equitable sharing of the benefits arising out of the utilization of genetic resources. An eco- system approach is based on the application of appropriate scientific meth- odologies focused on levels of biological organization, which encompass the essential structure, processes, functions and interactions among or- ganisms and their environment. It recognizes that humans, with their cultural diversity, are an integral component of many ecosystems. According to the CBD, the term ecosystem can refer to any functioning unit at any scale. This approach requires adaptive management to deal with the complex and dynamic nature of ecosystems and the absence of complete knowledge or un- derstanding of their

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us