Naïve Set Theory » Patrick Cousot Jerome C

Naïve Set Theory » Patrick Cousot Jerome C

« Mathematical foundations: (1) Naïve set theory » Patrick Cousot Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics cousot mit edu www.mit.edu/~cousot Course 16.399: “Abstract interpretation” Georg F. Cantor http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/ Reference [1] Cantor, G., 1932, “Gesammelte Abhandlungen mathematischen und philosohischen Inhalts”, E. Zermelo, Ed. Berlin: Springer-Verlag. Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—1—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—3—[] ¨ — £££I ľ P. Cousot, 2005 Set theory –Innaïve set theory everything is a set, including the empty set ;; So any collection of objects can be re- garded as a single entity (i.e. a set) Sets –Aset is a collection of elements which are sets (but sets in sets in sets . cannot go for ever); – In practice one consider a universe of objects (which are not sets and called atoms) out of which are built sets of objects, set of sets of objects, etc. §x Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—2—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—4—[] ¨ — £££I ľ P. Cousot, 2005 Membership Additional notations are as follows: def – a 2 x means that the object a belongs to/is an element P _ Q = :((:P ) ^ (:Q)) “P or Q” def of the set x P =) Q =(:P ) _ Q “P implies Q” def – a 62 x means that the object a does not belong to/is P () Q =(P =) Q) ^ (Q =) P ) “P iff 1Q” def not an element of the set x: P _ Q =(P _ Q) ^:(P ^ Q) “P exclusive or Q” def def (a 62 x) = :(a 2 x) 9x : P = :(8x :(:P )) “there exists x such that P ” def 9a 2 S : P = 9a : a 2 S ^ P def 9a1;a2;:::;an 2 S : P = 9a1 2 S : 9a2;:::;an 2 S : P def 8a 2 S : P = 8a :(a 2 S)=) P def 8a1;a2;:::;an 2 S : P = 8a1 2 S : 8a2;:::;an 2 S : P 1 if and only if Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—5—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—7—[] ¨ — £££I ľ P. Cousot, 2005 Logical symbols Comparison of sets If P , Q, . are logical statements about sets, then we def use the following abbreviations: x „ y = 8a :(a 2 x =) a 2 y) inclusion def – P ^ Q abbreviates “P and Q” x « y = y „ x superset def – :P abbreviates “not P ” x = y =(x „ y) ^ (y „ x) equality def – 8x : P abbreviates “forall x, P ” x 6= y = :(x = y) inequality def x y =(x „ y) ^ (x 6= y) strict inclusion def x ff y =(x « y) ^ (x 6= y) strict superset Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—6—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—8—[] ¨ — £££I ľ P. Cousot, 2005 Operations on sets Set theoretic laws Intuition provided by Venn diagrams but better proved def (z = x [ y) = 8a :(a 2 z) , (a 2 x _ a 2 y) union formally from the definitions. def x [ x = x (z = x \ y) = 8a :(a 2 z) , (a 2 x ^ a 2 y) intersection x \ x = x def (z = x n y) = 8a :(a 2 z) , (a 2 x ^ a 62 y) difference x „ x [ y upper bound x \ y „ x lower bound x [ y = y [ x commutativity x \ y = y \ x (x „ z) ^ (y „ z)=) (x [ y) „ z lub 2 (z „ x) ^ (z „ y)=) z „ (x \ y) glb 3 2 lub: least upper bound. 3 glb: greatest lower bound Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—9—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—11—[] ¨ — £££I ľ P. Cousot, 2005 Partial order x [ (y [ z)=(x [ y) [ z associativity „ is a partial order in that: x \ (y \ z)=(x \ y) [ z x [ (y \ z)=(x [ y) \ (x [ z) distributivity x „ x reflexivity x \ (y [ z)=(x \ y) [ (x \ z) (x „ y ^ y „ x)=) (x = y) antisymetry x „ y () (x [ y)=y (x „ y) ^ (y „ z)=) (x „ z) transitivity (x \ y)=x x n y = x n (x \ y) is a strict partial order in that: z n (z n x)=x x „ y () (z n y) „ (z n x) :(x x) irrreflexivity x [ (z n x)=z (x y) ^ (y z)=) (x z) transitivity z n (x [ y)=(z n x) \ (z n y) z n (x \ y)=(z n x) [ (z n y) Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—10—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—12—[] ¨ — £££I ľ P. Cousot, 2005 Empty set – 8a :(a 62;) Definition of the empty set – The emptyset is unique 4. – Emptyset laws: Operations on set x n;= x ;„x x n x = ; x [; = x x \ (y n x)=; x \; = ; 4 [8a:(a 62 x)] =) [(8a :(a 62 x)=) (a 62;)) ^ (8a :(a 62;)=) (a 62 x))] =) [(8a :(a 2;)=) (a 2 x)) ^ (8a :(a 2 x)=) (at 2;))] =) [;„x ^ x „;]=) [x = ;]. Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—13—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—15—[] ¨ — £££I ľ P. Cousot, 2005 Notations for sets Pairs def – Definitions in extension: – ha; bi = ffag; fa; bgg 5 - ; Empty set – ha; bi1 = a first projection 6 - fag Singleton – ha; bi2 = b second projection - fa; bg Doubleton (a 6= b) – x0, x1 undefined for non-pairs - fa1;:::;ang Finite set - fa1;:::;an;:::g Infinite set – Definition in comprehension: - fa j P (a)g Examples: x [ y = fa j a 2 x _ a 2 yg ST ST S 5 def x \ y = fa j a 2 x ^ a 2 yg Other notationsS are ha;T bi:1, ha; bi#1,... Formally ha; bi1 SS= ha; bi SS= ffag; Sfa; bgg = fag = a. 6 def SFormally, ifT ha; bi = ha; bi then a = b whence ha; bi2 = S hSa; bi = Tffbgg = fSbgS= b.Otherwise x n y = fa j a 2 x ^ a 62 yg def T ha; bi 6= ha; bSi thatS is a 6= b,inwhichcaseS ha; bi2 = ( ha; bin ha; bi)= ( ffag; fa; bgg n ffag; fa; bgg)= ( fa; bgnfag)= fbg = b. Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—14—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—16—[] ¨ — £££I ľ P. Cousot, 2005 Tuples Powerset def def – }(x) = fy j y „ xg powerset – ha1; :::; an+1i = hha1; :::; ani;an+1i tuple S def – y def= a x y : a x Union – ha1; :::; anii = ai i =1;:::;n projection f j9 2 2 g T def –Law: – y = fa j8x 2 y : a 2 xg Intersection 0 0 0 0 ha1; :::; ani = ha1; :::; ani,a1 = a1^:::^an = an –Laws: [ \ x [ y = fx; yg fxg = x \ [ x \ y = fx; yg ; = ; [ \ fxg = x ; = fa j trueg Universe Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—17—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—19—[] ¨ — £££I ľ P. Cousot, 2005 Cartesian product Families (indexed set of sets) def – x ˆ y = fha; bija 2 x ^ b 2 yg – x = fyi j i 2 Ig I indexing set for the elements of x S def S def – y = x – x1 ˆ :::ˆ xn+1 =(x1 ˆ :::ˆ xn) ˆ xn+1 so i2I i = fa j9i 2 I : a 2 yig x1 ˆ:::ˆxn = fha1; :::; anija1 2 x1 ^:::^an 2 xng T T n def – y def= x – x = |x ˆ :::{z ˆ x} i2I i n times = fa j8i 2 I : a 2 yig def –Laws: [ – x0 = ; 8i 2 I :(xi „ y)=) ( xi „ y) i2I \ 8i 2 I :(y „ xi)=) (y „ xi) i2I Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—18—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—20—[] ¨ — £££I ľ P. Cousot, 2005 [ [ [ Relations (xi [ yi)=( xi) [ ( yi) – r „ x unary relation on x i\2I i\2I i\2I – r „ x ˆ y binary relation (xi \ yi)=( xi) \ ( yi) i2[I i[2I i2I – r „ x1 ˆ :::ˆ xn n-ary relation (xi \ y)=( (xi) \ y – Graphical representation of a relation r on a finite set i\2I i\2I x: (xi [ y)=( (xi) [ y r i2I [ [i2I z n xi = (z n xi) › elements of the set x i\2I i\2I a b z n xi = (z n xi) ›`!› ha; bi2r i2I i2I Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—21—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—23—[] ¨ — £££I ľ P. Cousot, 2005 Notations for relations –Ifr „ x1 ˆ :::ˆ xn then we use the notation: def r(a ;:::;a ) = ha ; :::; a i2r Relations 1 n 1 n – In the specific case of binary relation, we also use: def arb = ha; bi2r example: 5 » 7 r def a `! b = ha; bi2r Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—22—[] ¨ — £££I ľ P. Cousot, 2005 Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—24—[] ¨ — £££I ľ P. Cousot, 2005 Properties of binary relations Let r „ x ˆ x be a binary relation on the set x – 8a 2 x :(ara) reflexive – 8a; b 2 x :(arb) () (bra) symmetric Reflexive transitive closure – 8a; b 2 x :(arb^ a 6= b)=):(bra) antisymmetric – 8a; b 2 x :(a 6= b)=) (arb_ bra) connected – 8a; b; c 2 x :(arb) ^ (brc)=) (arc) transitive Course 16.399: “Abstract interpretation”, Tuesday March 1st, 2005 J¡¡¡—25—[] ¨ — £££I ľ P.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us