Fim012-Endmatter.Pdf

Fim012-Endmatter.Pdf

Selected Title s i n Thi s Serie s 12 Salm a Kuhlmann , Ordere d exponentia l fields , 200 0 11 Tibo r Krisztin , Hans-Ott o Walther , an d Jianhon g Wu , Shape , smoothnes s an d invariant stratificatio n o f an attractin g se t fo r delaye d monoton e positiv e feedback , 199 9 10 Jif f Patera , Editor , Quasicrystal s an d discret e geometry , 199 8 9 Pau l Selick , Introductio n t o homotop y theory , 199 7 8 Terr y A * Loring , Liftin g solution s to perturbin g problem s i n C* -algebras, 199 7 7 S . O * Kochman, Bordism , stabl e homotop y an d Adam s spectra l sequences , 199 6 6 Kennet h R, . Davidson , C**Algebra s b y example, 199 6 5 A * Weiss, Multiplicativ e Galoi s module structure, 199 6 4 Gerar d Besson , Joachi m Lohkamp , Pierr e Pansu , an d Pete r Peterse n Miroslav Lovric , Maun g Min-Oo , an d McKenzi e Y.-K . Wang , Editors , Riemannian geometry , 199 6 3 Albrech t Bottcher , Aa d Dijksm a an d Hein z Langer , Michae l A . Dritsche l an d James Rovnyak , an d M . A . Kaashoe k Peter Lancaster , Editor , Lecture s o n operator theor y an d it s applications, 199 6 2 Victo r P a Snaith, Galoi s module structure , 199 4 1 Stephe n Wiggins , Globa l dynamics , phas e spac e transport, orbit s homoclini c t o resonances, an d applications , 199 3 This page intentionally left blank Ordered Exponential Fields This page intentionally left blank http://dx.doi.org/10.1090/fim/012 FIELDS INSTITUT E MONOGRAPHS THE FIELD S INSTITUT E FO R RESEARCH I N MATHEMATICA L SCIENCE S Ordered Exponential Fields Salma Kuhlman n American Mathematical Society Providence, Rhode Island The Field s Institut e for Researc h i n Mathematical Science s The Field s Institut e i s named i n honou r o f the Canadia n mathematicia n Joh n Charle s Fields (1863-1932) . Field s wa s a visionar y wh o receive d man y honour s fo r hi s scientifi c work, includin g election to the Royal Societ y of Canada i n 190 9 and to the Roya l Societ y o f London i n 1913 . Amon g othe r accomplishment s i n th e servic e o f the internationa l math - ematics community , Field s wa s responsibl e fo r establishin g th e world' s mos t prestigiou s prize fo r mathematic s research—th e Field s Medal . The Field s Institute fo r Researc h i n Mathematical Science s i s supported b y grants fro m the Ontario Ministr y o f Education an d Trainin g and th e Natural Science s and Engineerin g Research Counci l o f Canada . Th e Institut e i s sponsore d b y McMaste r University , th e University o f Toronto , th e Universit y o f Waterloo, an d Yor k Universit y an d ha s affiliate d universities i n Ontari o an d acros s Canada . This researc h wa s supporte d b y a Deutsch e Forschungsgemeinshaf t Habilitationssti - pendium an d a n Auslandsaufenthalts-Stipendium . Partiall y supporte d b y a n Individua l Research Gran t fro m th e Natura l Science s an d Engineerin g Researc h Counci l o f Canada , and b y th e Universit y o f Saskatchewa n President' s NSER C fund . 1991 Mathematics Subject Classification. Primar y 03C60 , 12J15 ; Secondary 12L12 , 26A12 . ABSTRACT. W e provide a detailed valuatio n theoreti c descriptio n o f ordered field s whic h admi t a n exponential function . I n particular , w e analyz e th e structur e o f the non-archimedea n model s o f o-minimal expansion s o f the reals , i n whic h th e exponentia l functio n i s definable . W e appl y ou r results to study the Hard y fields associate d to suc h expansions. Th e appendi x present s the mode l theory o f the valu e group s o f ordered exponentia l fields. Library o f Congres s Cataloging-in-Publicatio n Dat a Kuhlmann, Salma , 1958 - Ordered exponentia l fields / Salm a Kuhlmann . p. cm . — (Field s Institut e monographs , ISS N 1069-527 3 ; 12 ) Includes bibliographica l reference s an d index . ISBN 0-8218-0943- 1 (acid-fre e paper ) 1. Model theoreti c algebra . 2 . Ordered fields. I . Title. II . Series . QA9.7.K84 200 0 511'.8-dc21 99-04950 2 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission should be addressed to the Assistant to the Publisher, America n Mathematical Society , P. O. Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o b e mad e b y e-mai l t o reprint-permissionQams.org. © 200 0 by the America n Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . This publicatio n wa s prepared b y Th e Field s Institute . Visit th e AM S hom e pag e a t URL : http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 5 0 4 0 3 0 2 01 0 0 a me s soeurs Magda, Nawa l Farida et Amir a et me s filles Anna Nour a et Nail a This page intentionally left blank II faut fair e d e la vie un rev e et d u rev e une realit e Marie Curi e This page intentionally left blank Contents Introduction xii i Chapter 0 . Preliminarie s o n valued an d ordere d module s 1 1. Value d module s 1 2. Valuatio n independenc e 5 3. Ordere d module s 7 Chapter 1 . Non-archimedea n exponentia l fields 1 5 1. Th e natural valuatio n o f an ordered field 1 5 2. Th e skeleto n o f (K >0, • , 1, <) 1 8 3. Formall y exponentia l fields 2 2 4. Lexicographi c (de)compositio n o f exponentials 2 4 5. Exponentiatio n i n power serie s fields 2 7 6. Extension s an d maximalit y 2 9 7. Th e structure theor y fo r countabl e exponentia l fields 3 1 Chapter 2 . Valuatio n theoretic interpretation o f the growth and Taylor axioms 3 3 1. Th e axio m scheme s (GA ) an d (T ) 3 3 2. (GA)-exponential s an d the valu e group 3 4 3. Liftin g ex p from th e residue field 3 6 4. (T)-exponential s o n the infinitesimal s 3 7 5. Conclusio n 3 9 6. Countabl e exponentia l fields with growt h properties 4 0 7. Natura l contraction s arisin g fro m logarithm s 4 4 Chapter 3 . Th e exponentia l ran k 4 9 1. Conve x valuations 4 9 2. Th e exponential analogu e o f the rank 5 2 3. (GA) - and (Ti)-prelogarithm s 5 3 4. Th e shif t ma p & 5 6 5. Characterizatio n o f the exponential an d the principa l exponentia l ran k 6 1 Chapter 4 . Constructio n o f exponential fields 6 5 1. ^-Logarithmi c cross-section s 6 5 2. A combinatorial resul t an d it s consequences 6 7 3. Existenc e o f logarithmic cross-section s 7 0 4. Fro m prelogarithm s to logarithms 7 3 Chapter 5 . Model s fo r th e elementar y theor y o f th e real s wit h restricte d analytic function s an d exponentiatio n 7 7 1. Twistin g a group cross-sectio n b y an automorphism 7 7 Xll Contents 2. Th e exponential-logarithmi c powe r serie s field 7 9 3. Model s o f arbitrary principa l exponentia l ran k 8 3 Chapter 6 . Exponentia l Hard y fields 8 9 1. Som e basic valuation theor y 8 9 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us