Diagonal Lifts of Metrics to Coframe Bundle

Diagonal Lifts of Metrics to Coframe Bundle

<p>Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 44, Number 2, 2018, Pages 328–337 </p><p>DIAGONAL LIFTS OF METRICS TO COFRAME BUNDLE </p><p>HABIL FATTAYEV AND ARIF SALIMOV </p><p>Abstract. In&nbsp;this paper the diagonal lift <sup style="top: -0.3013em;">D</sup>g of a Riemannian metric g of a manifold M<sub style="top: 0.1245em;">n </sub>to the coframe bundle F<sup style="top: -0.3013em;">∗</sup>(M<sub style="top: 0.1245em;">n</sub>) is defined, Levi-Civita connection, Killing vector fields with respect to the metric <sup style="top: -0.3012em;">D</sup>g and also an almost paracomplex structures in the coframe bundle are studied. </p><p>1. Introduction </p><p>The Riemannian metrics in the tangent bundle firstly has been investigated by the Sasaki [14].&nbsp;Tondeur [16] and Sato [15] have constructed Riemannian metrics on the cotangent bundle, the construction being the analogue of the metric Sasaki for the tangent bundle.&nbsp;Mok [7] has defined so-called the diagonal lift of metric to the linear frame bundle, which is a Riemannian metric resembles the Sasaki metric of tangent bundle. Some properties and applications for the Riemannian metrics of the tangent, cotangent, linear frame and tensor bundles are given in [1-4,7-9,12,13]. This paper is devoted to the investigation of Riemannian metrics in the coframe bundle.&nbsp;In 2 we briefly describe the definitions and results that are needed later, after which the diagonal lift <sup style="top: -0.3298em;">D</sup>g of a Riemannian metric g is constructed in 3.&nbsp;The Levi-Civita connection of the metric <sup style="top: -0.3299em;">D</sup>g is determined in In 4.&nbsp;In 5 we consider Killing vector fields in coframe bundle with respect to Riemannian metric <sup style="top: -0.3299em;">D</sup>g. An&nbsp;almost paracomplex structures in the coframe bundle equipped with metric <sup style="top: -0.3299em;">D</sup>g are studied in 6. </p><p>2. Preliminaries </p><p>We shall summarize briefly the basic definitions and results which be used later. <br>Let M<sub style="top: 0.1363em;">n </sub>be an n−dimensional differentiable manifold of class C<sup style="top: -0.3299em;">∞ </sup>and F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>) its coframe bundle (see, [10, 11]). The coframe bundle F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>) over M<sub style="top: 0.1363em;">n </sub>consists of all pairs (x, u<sup style="top: -0.3298em;">∗</sup>), where x is a point of M<sub style="top: 0.1364em;">n </sub>and u<sup style="top: -0.3298em;">∗ </sup>is a basis (coframe) for the cotangent space T<sup style="top: -0.3299em;">∗</sup>M. We denote by π the natural projection of F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>) to M<sub style="top: 0.1363em;">n </sub>defined by π(x, u<sup style="top: -0.3299em;">∗</sup><sup style="top: -0.8545em;">x</sup>) = x. If&nbsp;(U; x<sup style="top: -0.3299em;">1</sup>, x<sup style="top: -0.3299em;">2</sup>, ..., x<sup style="top: -0.3299em;">n</sup>) is a system of local coordinates in M<sub style="top: 0.1363em;">n</sub>, then a coframe u<sup style="top: -0.3299em;">∗ </sup>= (X<sup style="top: -0.3299em;">α</sup>) = (X<sup style="top: -0.3299em;">1</sup>, X<sup style="top: -0.3299em;">2</sup>, ..., X<sup style="top: -0.3299em;">n</sup>) for T<sub style="top: 0.2248em;">x</sub><sup style="top: -0.3299em;">∗</sup>M<sub style="top: 0.1363em;">n </sub>can be expressed uniquely in the form X<sup style="top: -0.3299em;">α </sup>= X<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3299em;">α</sup>(dx<sup style="top: -0.3299em;">i</sup>)<sub style="top: 0.1364em;">x </sub>and hence </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">π</li><li style="flex:1"><sup style="top: -0.3753em;">−1</sup>(U); x<sup style="top: -0.3753em;">1</sup>, x<sup style="top: -0.3753em;">2</sup>, ..., x<sup style="top: -0.3753em;">n</sup>, X<sub style="top: 0.2248em;">1</sub><sup style="top: -0.3753em;">1</sup>, X<sub style="top: 0.2248em;">2</sub><sup style="top: -0.3753em;">1</sup>, ..., X<sub style="top: 0.2248em;">n</sub><sup style="top: -0.3753em;">n </sup></li></ul><p></p><p>2010 Mathematics Subject Classification.&nbsp;53C25, 55R10. </p><p>Key words and phrases. Riemannian metric, coframe bundle, diagonal lift, Levi-Civita connection, Killing vector field, almost paracomplex structure. </p><p>328 </p><ul style="display: flex;"><li style="flex:1">DIAGONAL LIFTS OF METRICS TO COFRAME BUNDLE </li><li style="flex:1">329 </li></ul><p></p><p>is a system of local coordinates in F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>) (see, [10]). Indices i, j, k, ..., α, β, γ, ... have range in {1, 2, ..., n}, while indices A, B, C, ...&nbsp;have range in </p><p>ꢂ</p><p></p><ul style="display: flex;"><li style="flex:1">1, ..., n, n + 1, ..., n + n<sup style="top: -0.3753em;">2 </sup></li><li style="flex:1">.</li></ul><p></p><p>We put h<sub style="top: 0.1363em;">α </sub>= α · n + h. Summation over repeated indices is always implied. </p><p>r</p><p>We denote by =<sub style="top: 0.2248em;">s</sub>(M<sub style="top: 0.1364em;">n</sub>) the set of all differentiable tensor fields of type (r, s) on M<sub style="top: 0.1363em;">n</sub>. Let&nbsp;V = V <sup style="top: -0.3299em;">i</sup>∂<sub style="top: 0.1363em;">i </sub>and ω = ω<sub style="top: 0.1363em;">i</sub>dx<sup style="top: -0.3299em;">i </sup>be the local expressions in U ⊂ M<sub style="top: 0.1363em;">n </sub>of a </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p>vector and a covector (1-form) fields V ∈ =<sub style="top: 0.2436em;">0</sub>(M<sub style="top: 0.1364em;">n</sub>) and ω ∈ =<sub style="top: 0.2436em;">1</sub>(M<sub style="top: 0.1364em;">n</sub>), respectively. Then the complete and horizontal lifts <sup style="top: -0.3298em;">C</sup>V,<sup style="top: -0.3298em;">H </sup>V ∈ =<sub style="top: 0.2436em;">0</sub>(F<sup style="top: -0.3298em;">∗</sup>M<sub style="top: 0.1364em;">n</sub>) of V and the β−th </p><p>1</p><p>V<sub style="top: 0.1172em;">β </sub></p><p>1</p><p>vertical lifts&nbsp;ω ∈ =<sub style="top: 0.2436em;">0</sub>(F<sup style="top: -0.3299em;">∗</sup>M<sub style="top: 0.1363em;">n</sub>) (β = 1, 2, ..., n) of ω have respectively, </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>V <sup style="top: -0.3299em;">i </sup><br>V <sup style="top: -0.3299em;">i </sup></p><p>0</p><p>V<sub style="top: 0.1172em;">β </sub></p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.3754em;">C</sup>V = </li><li style="flex:1">,</li><li style="flex:1"><sup style="top: -0.3754em;">H</sup>V = </li><li style="flex:1">,</li><li style="flex:1">ω = </li></ul><p></p><p>(2.1) </p><p>X<sub style="top: 0.2547em;">j</sub><sup style="top: -0.3298em;">α</sup>Γ<sup style="top: -0.4423em;">j</sup><sub style="top: 0.2936em;">ik</sub>V <sup style="top: -0.3298em;">k </sup></p><ul style="display: flex;"><li style="flex:1">δ<sub style="top: 0.2768em;">β</sub><sup style="top: -0.3298em;">α</sup>ω<sub style="top: 0.1364em;">i </sub></li><li style="flex:1">−X<sub style="top: 0.2547em;">j</sub><sup style="top: -0.3299em;">α</sup>∂<sub style="top: 0.1364em;">i</sub>V <sup style="top: -0.3299em;">j </sup></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">o</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∂</li><li style="flex:1">∂</li></ul><p></p><p>with respect to the natural frame {∂<sub style="top: 0.1363em;">i</sub>, ∂<sub style="top: 0.1363em;">i </sub>} = details). </p><p>,</p><p>, (see [10] for more </p><p>∂X<sub style="top: 0.2208em;">i</sub><sup style="top: -0.2288em;">α </sup></p><p>∂x<sup style="top: -0.1892em;">i </sup></p><p>α</p><p>The vertical lift of a smooth function f on M<sub style="top: 0.1364em;">n </sub>is a function <sup style="top: -0.3298em;">V </sup>f on F<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>) defined by <sup style="top: -0.3299em;">V </sup>f = f ◦ π. <br>Let (U, x<sup style="top: -0.3298em;">i</sup>) be a coordinate system in M<sub style="top: 0.1364em;">n</sub>. In U ∈ M<sub style="top: 0.1364em;">n</sub>, we put </p><p>∂<br>∂x<sup style="top: -0.2627em;">i </sup></p><p>X<sub style="top: 0.185em;">(i) </sub></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">θ<sup style="top: -0.3753em;">(i) </sup>= dx<sup style="top: -0.3753em;">i</sup>, i = 1, 2, ..., n. </li></ul><p></p><p>H</p><p>V<sub style="top: 0.083em;">α </sub>(i) </p><p>Taking account of (2.1), we easily see that the components of&nbsp;X<sub style="top: 0.185em;">(i) </sub>and </p><p>θ</p><p>are respectively, given by </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p>ꢄ</p><p>δ<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3298em;">h </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>D<sub style="top: 0.1364em;">i </sub>= <sup style="top: -0.3753em;">H</sup>X<sub style="top: 0.185em;">(i) </sub>= A<sup style="top: -0.3753em;">H</sup><sub style="top: 0.2247em;">i </sub></p><p>=</p><p>,</p><p>(2.2) (2.3) </p><p>X<sub style="top: 0.2547em;">j</sub><sup style="top: -0.3299em;">α</sup>Γ<sup style="top: -0.4423em;">j</sup><sub style="top: 0.2936em;">ih </sub></p><p>ꢃ</p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>0</p><p>δ<sub style="top: 0.2767em;">β</sub><sup style="top: -0.3299em;">α</sup>δ<sub style="top: 0.2767em;">h</sub><sup style="top: -0.3299em;">i </sup></p><p>V<sub style="top: 0.083em;">α </sub>(i) </p><p>D<sub style="top: 0.1364em;">i </sub></p><p>=</p><p>θ</p><p>= A<sup style="top: -0.3753em;">H</sup><sub style="top: 0.2247em;">i </sub></p><p>=</p><p>αα</p><p>ꢂ</p><p>with respect to the natural frame {∂<sub style="top: 0.1364em;">i</sub>, ∂<sub style="top: 0.1364em;">i </sub>}. We&nbsp;call the set&nbsp;<sup style="top: -0.3298em;">H</sup>X<sub style="top: 0.185em;">(i)</sub>, <sup style="top: -0.3298em;">V</sup><sup style="top: -0.2468em;">α </sup>θ<sup style="top: -0.3298em;">(i) </sup>the </p><p>α</p><p>frame adapted to the Levi-Civita connection ∇<sub style="top: 0.1363em;">g</sub>. On putting </p><p>V<sub style="top: 0.083em;">α </sub>(i) </p><p>D<sub style="top: 0.1364em;">i </sub>= <sup style="top: -0.3753em;">H</sup>X<sub style="top: 0.185em;">(i)</sub>, D<sub style="top: 0.1364em;">i </sub></p><p>=</p><p>θ , </p><p>α</p><p>we write the adapted frame as {D<sub style="top: 0.1408em;">I</sub>} = {D<sub style="top: 0.1363em;">i</sub>, D<sub style="top: 0.1363em;">i </sub>}. From&nbsp;equations (2.2), (2.3) </p><p>α</p><p>V<sub style="top: 0.083em;">α </sub></p><p>and (2.1) we see that <sup style="top: -0.3299em;">H</sup>V and ω have respectively, components </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>0</p><p>δ<sub style="top: 0.1183em;">α</sub><sup style="top: -0.4423em;">β</sup>ω<sub style="top: 0.1364em;">i </sub></p><p>V <sup style="top: -0.3299em;">i </sup></p><p>0</p><p>ꢃ</p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p><sup style="top: -0.3754em;">H</sup>V = V <sup style="top: -0.3754em;">i</sup>D<sub style="top: 0.1363em;">i</sub>, <sup style="top: -0.3754em;">H</sup>V = <sup style="top: -0.3754em;">H</sup>V <sup style="top: -0.3754em;">I </sup></p><p>=</p><p>,</p><p>(2.4) (2.5) </p><p>ꢄ<br>X</p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ω = </li><li style="flex:1">ω<sub style="top: 0.1363em;">i</sub>δ<sub style="top: 0.2248em;">α</sub><sup style="top: -0.3754em;">β</sup>D<sub style="top: 0.1363em;">i </sub>, ω&nbsp;= </li></ul><p></p><p>V<sub style="top: 0.0831em;">α </sub></p><p>ω<sup style="top: -0.3754em;">I </sup></p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">V<sub style="top: 0.0831em;">α </sub></li><li style="flex:1">V<sub style="top: 0.0831em;">α </sub></li></ul><p></p><p>α</p><p>i</p><p>with respect to the adapted frame {D<sub style="top: 0.1407em;">I</sub>}, where V <sup style="top: -0.3298em;">i </sup>and ω<sub style="top: 0.1364em;">i </sub>being local components </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p>of V ∈ =<sub style="top: 0.2436em;">0</sub>(M<sub style="top: 0.1363em;">n</sub>) and ω ∈ =<sub style="top: 0.2436em;">1</sub>(M<sub style="top: 0.1363em;">n</sub>), respectively. <br>Let us consider local 1−forms η˜<sup style="top: -0.3299em;">I </sup>in π<sup style="top: -0.3299em;">−1</sup>(U) defined by </p><p>η˜ =&nbsp;A <sub style="top: 0.2248em;">J </sub>dx<sup style="top: -0.3753em;">J </sup>, </p><p></p><ul style="display: flex;"><li style="flex:1">I</li><li style="flex:1">I</li></ul><p></p><p>¯where </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p>δ<sub style="top: 0.2547em;">j</sub><sup style="top: -0.3299em;">i </sup></p><p>0</p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p><p>A <sub style="top: 0.2547em;">j </sub>A <sub style="top: 0.2547em;">j </sub></p><p>I</p><p>β</p><p></p><ul style="display: flex;"><li style="flex:1">A<sup style="top: -0.3753em;">−1 </sup>= (A <sub style="top: 0.2247em;">J </sub>) = </li><li style="flex:1">=</li></ul><p></p><p>.</p><p>(2.6) <br>¯</p><p>−X<sub style="top: 0.2248em;">m</sub><sup style="top: -0.3299em;">α </sup>Γ<sup style="top: -0.3299em;">m</sup><sub style="top: 0.2546em;">ij </sub>δ<sub style="top: 0.2767em;">β</sub><sup style="top: -0.3299em;">α</sup>δ<sub style="top: 0.2714em;">i</sub><sup style="top: -0.4423em;">j </sup></p><p>i<sub style="top: 0.083em;">α </sub></p><p>j</p><p>i<sub style="top: 0.083em;">α </sub></p><p>¯</p><p>A</p><p>¯</p><p>A</p><p>j<sub style="top: 0.1172em;">β </sub></p><p></p><ul style="display: flex;"><li style="flex:1">330 </li><li style="flex:1">HABIL FATTAYEV AND ARIF SALIMOV </li></ul><p></p><p>The matrix (2.6) is the inverse of the matrix </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">j</li><li style="flex:1">j</li></ul><p></p><p>γ</p><p>j<sub style="top: 0.1172em;">β </sub></p><p>δ<sub style="top: 0.2936em;">k</sub><sup style="top: -0.4423em;">j </sup><br>X<sub style="top: 0.1183em;">m</sub><sup style="top: -0.4423em;">β </sup>Γ<sup style="top: -0.3299em;">m</sup><sub style="top: 0.2768em;">jk </sub>δ<sub style="top: 0.1183em;">γ</sub><sup style="top: -0.4423em;">β</sup>δ<sub style="top: 0.2546em;">j</sub><sup style="top: -0.3299em;">k </sup></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">A<sub style="top: 0.2936em;">k </sub></li><li style="flex:1">A<sub style="top: 0.2936em;">k </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">A = (A<sub style="top: 0.2247em;">K </sub><sup style="top: -0.3754em;">J </sup>) = </li><li style="flex:1">=</li><li style="flex:1">(2.7) </li></ul><p></p><p>j<sub style="top: 0.1172em;">β </sub></p><p></p><ul style="display: flex;"><li style="flex:1">A<sub style="top: 0.2935em;">k </sub></li><li style="flex:1">A<sub style="top: 0.2935em;">k </sub></li></ul><p></p><p>γ</p><p>of the transformation D<sub style="top: 0.1407em;">K </sub>= A<sub style="top: 0.2694em;">K </sub><sup style="top: -0.3299em;">J </sup>∂<sub style="top: 0.1407em;">J </sub>( see (2.2) and (2.3)). It is easy to establish </p><p>ꢂ</p><p>that the set&nbsp;η˜<sup style="top: -0.3299em;">I </sup>is the coframe dual to the adapted frame {D<sub style="top: 0.1408em;">K</sub>}, i.e. η˜ (D<sub style="top: 0.1408em;">K</sub>) = A <sub style="top: 0.2248em;">J </sub>A<sub style="top: 0.2247em;">K </sub>= δ<sub style="top: 0.2247em;">K</sub><sup style="top: -0.3753em;">I </sup>. </p><p></p><ul style="display: flex;"><li style="flex:1">I</li><li style="flex:1">I</li><li style="flex:1">J</li></ul><p></p><p>¯</p><p>D</p><p>3. Diagonal&nbsp;lift g of a Riemannian metric g to the coframe bundle </p><p>On putting locally </p><p>n</p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.3754em;">D</sup>g = g<sub style="top: 0.1363em;">ij</sub>η˜<sup style="top: -0.3754em;">i </sup>⊗ η˜<sup style="top: -0.3754em;">j </sup>+ δ<sub style="top: 0.1481em;">αβ </sub></li><li style="flex:1">g<sup style="top: -0.3754em;">ij</sup>η˜<sup style="top: -0.3754em;">i</sup><sup style="top: 0.0831em;">α </sup>⊗ η˜<sup style="top: -0.3754em;">j</sup><sup style="top: 0.1172em;">β </sup></li></ul><p></p><p>(3.1) </p><p>i,j </p><p>in the coframe bundle F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>), we see that <sup style="top: -0.3299em;">D</sup>g defines a tensor field of type (0, 2) in F<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>) which called the diagonal lift of the tensor field g to F<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>) with respect to Γ<sup style="top: -0.3299em;">k</sup><sub style="top: 0.2546em;">ij</sub>. From&nbsp;(2.6), (2.7) and (3.1) we prove that <sup style="top: -0.3299em;">D</sup>g has components of the form </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>g<sub style="top: 0.1364em;">ij </sub></p><p>0<br>0</p><p><sup style="top: -0.3753em;">D</sup>g = </p><p>(3.2) </p><p>δ<sub style="top: 0.1482em;">αβ</sub>g<sup style="top: -0.3298em;">ij </sup></p><p>with respect to the adapted frame {D<sub style="top: 0.1407em;">I</sub>} in F<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>) and components </p><p></p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p>P</p><p>g<sub style="top: 0.1363em;">ij </sub>+ <sub style="top: 0.2688em;">α=1 </sub>g<sup style="top: -0.3299em;">ks</sup>X<sub style="top: 0.2247em;">m</sub><sup style="top: -0.3299em;">α </sup>X<sub style="top: 0.2767em;">l</sub><sup style="top: -0.3299em;">α</sup>Γ<sub style="top: 0.2767em;">i</sub><sup style="top: -0.3299em;">m</sup><sub style="top: 0.2767em;">k</sub>Γ<sub style="top: 0.2546em;">j</sub><sup style="top: -0.3299em;">l </sup><sub style="top: 0.2546em;">s </sub>−g<sup style="top: -0.3299em;">js</sup>X<sup style="top: -0.4423em;">β</sup>Γ<sub style="top: 0.2546em;">i</sub><sup style="top: -0.3299em;">l</sup><sub style="top: 0.2546em;">s </sub></p><p>n</p><p><sup style="top: -0.3753em;">D</sup>g = </p><p>(3.3) </p><p>l</p><p></p><ul style="display: flex;"><li style="flex:1">−g<sup style="top: -0.3299em;">is</sup>X<sub style="top: 0.2767em;">l</sub><sup style="top: -0.3299em;">α</sup>Γ<sup style="top: -0.3299em;">l</sup><sub style="top: 0.2546em;">js </sub></li><li style="flex:1">δ<sub style="top: 0.1481em;">αβ</sub>g<sup style="top: -0.3299em;">ij </sup></li></ul><p></p><p>with respect to the natural frame {∂<sub style="top: 0.1363em;">i</sub>, ∂<sub style="top: 0.1363em;">i </sub>}, where g<sup style="top: -0.3299em;">ij </sup>denote contravariant com- </p><p>α</p><p>ponents of g. <br>From (3.2) it easily follows that if g is a Riemannian metric in M<sub style="top: 0.1363em;">n</sub>, then <sup style="top: -0.3299em;">D</sup>g is a Riemannian metric in F<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>). The metric <sup style="top: -0.3298em;">D</sup>g is similar to that of the Riemannian metric studied by Sasaki in tangent bundle T(M<sub style="top: 0.1363em;">n</sub>)[14] (for the cotangent bundle T<sup style="top: -0.3298em;">∗</sup>(M<sub style="top: 0.1364em;">n</sub>)and linear frame bundle F(M<sub style="top: 0.1364em;">n</sub>) see [15],[7], respectively). <br>From (2.1) and (3.3) we have </p><p><sup style="top: -0.3753em;">D</sup>g(<sup style="top: -0.3753em;">H</sup>X, <sup style="top: -0.3753em;">H</sup>Y ) = <sup style="top: -0.3753em;">V </sup>(g(X, Y )) = g(X, Y ) ◦ π. </p><p>(3.4) <br>Therefore we have as follows. </p><p>1</p><p>Theorem 3.1. Let X, Y&nbsp;∈ =<sub style="top: 0.2436em;">0</sub>(M<sub style="top: 0.1364em;">n</sub>). Then&nbsp;the inner product of the horizontal lifts <sup style="top: -0.3299em;">H</sup>Xand <sup style="top: -0.3299em;">H</sup>Y to F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>)with the metric <sup style="top: -0.3299em;">D</sup>g is equal to the vertical lift of the inner product of Xand Y in M<sub style="top: 0.1363em;">n</sub>. </p><p>From (2.1) and (3.3) we have also </p><p>V<sub style="top: 0.1172em;">β </sub></p><p><sup style="top: -0.3753em;">D</sup>g(<sup style="top: -0.3753em;">V </sup>ω, θ) = δ<sup style="top: -0.3753em;">αβV </sup>(g<sup style="top: -0.3753em;">−1</sup>(ω, θ)) = δ<sup style="top: -0.3753em;">αβ</sup>(g<sup style="top: -0.3753em;">−1</sup>(ω, θ) ◦ π), </p><p>(3.5) (3.6) </p><p>α</p><p><sup style="top: -0.3753em;">D</sup>g(<sup style="top: -0.3753em;">H</sup>X, <sup style="top: -0.3753em;">V </sup>θ) = 0 </p><p>β</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p>for all X ∈ =<sub style="top: 0.2436em;">0</sub>(M<sub style="top: 0.1364em;">n</sub>) and ω, θ&nbsp;∈ =<sub style="top: 0.2436em;">1</sub>(M<sub style="top: 0.1364em;">n</sub>). We&nbsp;recall that any element t ∈ =<sub style="top: 0.2435em;">2</sub>(F<sup style="top: -0.3299em;">∗</sup>(M<sub style="top: 0.1363em;">n</sub>)) is completely determined by its action on vector fields of type </p><p>0</p><ul style="display: flex;"><li style="flex:1">DIAGONAL LIFTS OF METRICS TO COFRAME BUNDLE </li><li style="flex:1">331 </li></ul><p></p><p><sup style="top: -0.3299em;">H</sup>X and ω. From&nbsp;this it follows that <sup style="top: -0.3299em;">D</sup>g is completely determined by its eqs </p><p>V<sub style="top: 0.083em;">α </sub></p><p>(3.4), (3.5) and (3.6). </p><p>D</p><p>4. Levi-Civita&nbsp;connection of&nbsp;g </p><p>In section 2 we see that the components of the adapted frame {D<sub style="top: 0.1407em;">I</sub>} are given by </p><p>ꢂ</p><p>(2.2) and (2.3). On the other hand the components of the dual coframe&nbsp;η˜<sup style="top: -0.3299em;">I </sup>are given by matrix (2.6). <br>Since the adapted frame is non-holonomic, we put </p><p>[D<sub style="top: 0.1408em;">I</sub>, D<sub style="top: 0.1408em;">J </sub>] = Ω<sub style="top: 0.2247em;">IJ </sub><sup style="top: -0.3753em;">K</sup>D<sub style="top: 0.1408em;">K </sub></p><p>from which we have </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">K</li><li style="flex:1">K</li></ul><p></p><p>Ω<sub style="top: 0.2248em;">IJ </sub>= D<sub style="top: 0.1407em;">I</sub>A<sub style="top: 0.2248em;">J</sub><sup style="top: -0.3754em;">L </sup>− D<sub style="top: 0.1407em;">J </sub>A<sub style="top: 0.2248em;">I</sub><sup style="top: -0.3754em;">L </sup>A <sub style="top: 0.2248em;">L</sub>. </p><p>¯<br>According to (2.2), (2.3), (2.6) and (2.7), the components of non-holonomic object </p><p>K</p><p>Ω<sub style="top: 0.2694em;">IJ </sub>are given by </p><p>(</p><p>k<sub style="top: 0.083em;">γ </sub>k<sub style="top: 0.083em;">γ </sub>k<sub style="top: 0.083em;">γ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">= −Ω<sub style="top: 0.2714em;">j i&nbsp;</sub>= −δ<sub style="top: 0.2935em;">β</sub><sup style="top: -0.4423em;">γ</sup>Γ<sup style="top: -0.4422em;">j</sup><sub style="top: 0.2935em;">ik</sub>, </li><li style="flex:1">Ω<sub style="top: 0.2714em;">ij </sub></li></ul><p>Ω<sub style="top: 0.2714em;">ij </sub></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us