11 E. Answers (1) V(A) = F, V(B) = T, V(C)

11 E. Answers (1) V(A) = F, V(B) = T, V(C)

E. Answers (1) V(A) = F, V(B) = T, V(C) = F V(A) = F, V(B) = F, V(C) = F (2) V(A) = T, V(B) = T, V(C) = F, V(D) = F V(A) = T, V(B) = F, V(C) = T, V(D) = F (3) V(A) = T, V(B) = F, V(C) = T (4) V(A) = F, V(B) = F, V(C) = F, V(D) = F, V(E) = T F. Short Truth Table Test for Consistency Use the short truth table method to show that the following sets of premises are consistent: (1) 1. (A B) ∙ ~ C (3) 1. A ∙ (B E) 2. C D 2. (C D) ~ A 3. D (A B) / B 3. B (C ∙ D) / E (2) 1. D (A C) (4) 1. ~ B C 2. ~ [B (D E)] 2. (D C) ∙ (A ~ C) 3. ~ B ~ C / ~ D 3. (C ∙ ~ C) B 4. B (D A) / B F. Answers (1) V(A) = T, V(B) = T, V(C) = F, V(D) = F (2) V(A) = T, V(B) = T, V(C) = F, V(D) = T, V(E) = F (3) V(A) = T, V(B) = F, V(C) = F, V(D) = F, V(E) = F (4) V(A) = F, V(B) = T, V(C) = T, V(D) = F IV. CHAPTER FOUR: PROOFS WITHOUT CP OR IP Prove valid, using the eighteen valid argument forms (but not CP or IP): (l) 1. A ~ A /~ A (2) 1. ~ A B 2. C A 3. ~ B /~ C 11 (3) 1. A / (~ A C) (4) 1. (A B) C (7) 1. (A B) (C D) / B C 2. ~ A ~ C /~ B (5) 1. ~ [A ~ (~ A ~ B)] (8) 1. (A B) C 2. ~ (A B) (C D) / D 2. (B C) D 3. ~ (E ~ B) / ~ (~ D A) (6) 1. (A B) C 2. ~ C 3. ~ D B (9) 1. A B 4. ~ A ~ E /~ (~ E D) 2. C D / (A C) (B D) IV. ANSWERS (l) 1. A ~ A / ~ A p 2. ~ A ~ A 1 Impl 3. ~ A 2 Taut (2) 1. ~ A B p 2. C A p 3. ~ B / ~ C p 4. ~ A 1, 3 DS 5. ~ C 2, 4 MT (3) 1. A/ (~ A C) p 2. A (B C) 1 Add 3. ~ ~ A (B C) 2 DN 4. ~ A (B C) 3 Impl 5. (~ A B) C 4 Exp 6. (B ~ A) C 5 Comm 7. B (~ A C) 6 Exp (4) 1. (A B) C p 2. ~ A ~ C /~ B p 3. ~ C 2 Simp 4. ~ (A B) 1, 3 MT 5. ~ A ~ B 4 DeM 6. ~ B 5 Simp 12 (5) 1. ~ [A ~ (~ A ~ B)] p 2. ~ (A B) (C D) / D p ~ [A (~ ~ A ~ ~ B)] 1 DeM 4. ~ [A (A B)] 3 DN (2x) 5. ~ [(A A) B] 4 Assoc 6. ~ (A B) 5 Taut 7. C D 2,6 MP 8. D 7 Simp (6) 1. (A B) C p 2. ~ C p 3. ~ D B p 4. ~ A ~ E /~ (~ E D) p 5. ~ (A B) 1,2 MT 6. ~ A ~ B 5 DeM 7. ~ A 6 Simp 8. ~ E 4,7 MP 9. ~ B 6 Simp 10. ~ D 3,9 DS 11. ~ E ~ D 8,10 Conj 12. ~ (E D) 11 DeM 13. ~ (~ ~ E D) 12 DN 14. ~ (~ E D) 13 Impl (7) 1. (A B) (C D) / B C p 2. ~ (A B) (C D) 1 Impl 3. (~ A ~ B) (C D) 2 DeM 4. [(~ A ~ B) C] [(~ A ~ B) D] 3 Dist 5. (~ A ~ B) C 4 Simp 6. C (~ A ~ B) 5 Comm 7. (C ~ A) (C ~ B) 6 Dist 8. C ~ B 7 Simp 9. ~ B C 8 Comm 10. B C 9 Impl 13 (8) 1. (A B) C p 2. (B C) D p 3. ~ (E ~ B) / ~ (~ D A) p 4. ~ E ∙ ~ ~ B 3 DeM 5. ~ E ∙ B 4 DN 6. B 5 Simp 7. B (C D) 2 Exp 8. C D 6, 7 MP 9. (A B) D 1, 8 HS 10. (B A) D 9 Comm 11. B (A D) 10 Exp 12. A D 6, 11 MP 13. ~ A D 12 Impl 14. ~ A ~ ~ D 13 DN 15. ~ (A ~ D) 14 DeM 16. ~ (~ D A) 15 Comm (9) 1. A B p 2. C D / (A C) (B D) p 3. ~ A B 1 Impl 4. (~ A B) ~ C 3 Add 5. ~ A (B ~ C) 4 Assoc 6. ~ A (~ C B) 5 Comm 7. (~ A ~ C) B 6 Assoc 8. ~ C D 2 Impl 9. (~ C D) ~ A 8 Add 10 ~ A (~ C D) 9 Comm 11. (~ A ~ C) D 10 Assoc 12. [(~ A ~ C) B] [(~ A C) D] 7,11 Conj 13. (~ A ~ C) (B D) 12 Dist 14. ~ (A C) (B D) 13 DeM 15. (A C) (B D) 14 Impl V. CHAPTER FIVE: PROOFS WITH CP OR IP A. General Theory 1. Suppose you know that a particular twopremise argument is invalid. Now suppose we add the negation of the conclusion of the two premises to form a threesentence set of premises. Can a contradiction be derived from this threesentence set of premises? (Defend your answer.) 14 2. a. Use IP to prove that the following argument is valid. A B A ~ B / ~ A b. To illustrate how indirect proofs are a kind of shortened conditional proof, cross out the last line in the above proof and complete it as a conditional proof. (Hint: as an intermediate step prove A ~ A.) A. Answers 1. No, because derivation of a contradiction would constitute an indirect proof of validity for the argument, but by the hypothesis of the problem, the argument in question is invalid. 2. a. 1. A B 2. A ~ B 3. A AP / ~A 4. B 1,4 MP 5. ~ B 2,4 MP 6. B ~ B 5,6 Conj 7. ~ A 37 IP b. 7. B ~ A 4 Add 8. ~ A 5,7 DS 9. A ~ A 3-8 CP 10. ~ A ~ A 9 Impl 11. ~ A 10 Taut B. Proofs with CP or IP Prove valid, using the eighteen valid argument forms and CP or IP: (1) 1. A B 2. C D C ~ A / (A C) (B D) 3. D E 4. ~ D C (2) 1. (A B) C 5. E ~ A / B 2. (A ~ B) ~ C / C (4) 1. A (B C) 2. ~ C (A B) / C 15 (5) 1. (A B) (6) 1. ~ (A ~ B) [ (C D) E] 2. ~ [~ C (~ A ~ D)] / A 3. ~ [A (B ~ D)] [ ~ E ~ (C D)] / D C B. Answers (1) 1. A B p 2. C D / (A C) (B D) p 3. A C AP / B D 4. A 3 Simp 5. B 1, 4 MP 6. C 3 Simp 7. D 2, 6 MP 8. B C 5, 7 Conj 9. (A C) (B D) 3-8 CP (2) 1. (A B) C p 2. (A ~ B) ~ C p / A (B C) 3. A AP / B C 4. A (B C) 1 Exp 5. B C 3, 4 MP 6. A (~ B ~ C) 2 Exp 7. ~ B ~ C 3, 6 MP 8. C B 7 Contra 9. (B C) (C B) 5, 8 Conj 10. B C 9 Equiv 11. A (B C) 3 -10 CP (3) 1. A B p 2. C ~ A p 3. D E p 4. ~ D C p 5. E ~ A p / B 6. ~ B AP / B 7. A 1,6 DS 8. ~ ~ A 7 DN 9. ~ C 2, 8 MT 10. ~ ~ D 4,9 MT 11. D 10 DN 12. E 3, 11 MP 13. ~ E 5, 8 MT 14. E ~ E 12,13 Conj 15. B 6-14 IP 16 (4) 1. A (B C) p 2. ~ C (A B) p / C 3. ~ C AP / C 4. A B 2, 3 MP 5. (A B) C 1 Exp 6. C 4,5 MP 7. C ~ C 3, 6 Conj 8. C 3-7 IP (5) 1. (A B) [ (C D) E] p / A [~ E ~ (C D)] 2. A AP / ~ E ~ (C D) 3. C D AP / E 4. A B 2 Add 5. (C D) E 1,4 MP 6. C 3 Simp 7. C D 6 Add 8. E 5, 7 MP 9. (C D) E 3-8 CP 10. ~ E ~ (C D) 9 Contra 11. A [~ E ~ (C D)] 2-10 CP (6) 1. ~ (A ∙ ~ B) p 2. ~ [~ C ∙ (~ A ∙ ~ D)] p 3. ~ [A ∙ (B ∙ ~ D)] p / D C 4. ~ (D C) AP / D C 5. ~ D ~ C 4 DeM 6. ~ ~ C ~ (~ A ~ D) 2 DeM 7. C ~ (~ A ~ D) 6 DN 8. ~ C 5 Simp 9. ~ (~ A ~ D) 7,8 DS 10. ~ ~ A ~ ~ D 9 DeM 11. ~ A ~ (B ~ D) 3 DeM 12. ~ A ~ ~B 1 DeM 13. ~ ~ A D 10 DN 14. ~ D 5 Simp 15. ~ ~ A 13,14 DS 16. ~ ~ B 12,15 DS 17. ~ (B ~ D) 11,15 DS 18. ~ B ~ ~ D 17 DeM 19. ~ ~ D 16,18 DS 20. ~ D ~ ~ D 14,19 Conj 21. D C 4-20 IP 17 C. Show that premises in the following arguments are inconsistent: (1) 1. A (B C) (3) 1. ~ (~ T ~ R) 2. C (A B) 2. ~ S T 3. (B ~ A) (D B) 3. R S / T R 4. B ~ C / ~ A (2) 1. ~ (A ~ B) (4) 1. A (~ B ~ A) 2. ~ C A 2. B (~ C ~ B) 3. ~ C ~ B / C 3. C (~ A ~ B) / A (B C) C. Answers (1) 1. A (B C) p 2. C (A B) p 3. (B ~ A) (D B) p 4. B ~ C p 5.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us