Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer Sohini Sengupta Washington University in St

Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer Sohini Sengupta Washington University in St

Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2018 Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer Sohini Sengupta Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Bioinformatics Commons Recommended Citation Sengupta, Sohini, "Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer" (2018). Arts & Sciences Electronic Theses and Dissertations. 1688. https://openscholarship.wustl.edu/art_sci_etds/1688 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Computational and Systems Biology Dissertation Examination Committee: Li Ding, Chair Greg Bowman Barak Cohen Cynthia Ma Chris Maher Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer by Sohini Sengupta A dissertation presented to the Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2018 St. Louis, Missouri © 2018, Sohini Sengupta Table of Contents Acknowledgments ................................................................................................................... v Abstract of the Dissertation .................................................................................................... ix Chapter 1: Introduction .......................................................................................................... 1 1.1 Existing computational methods to identify driver mutations ..................................................... 3 1.1.1 Shortcomings of Current Computational Methods .................................................................... 7 Chapter 2: HotSpot3D: A computational algorithm to identify intra- and inter-molecular mutation clusters in protein structure ................................................................................... 11 Preface ........................................................................................................................................... 11 2.1 Abstract .................................................................................................................................... 13 2.2 Introduction ............................................................................................................................. 14 2.3 Results ...................................................................................................................................... 15 2.3.1 Intra- and inter-mutation clusters across 19 cancer types ....................................................... 15 2.3.2 Significant mutation clusters with cancer type specificity ........................................................ 17 2.3.3 Rare and medium recurrence functional mutation discovery .................................................. 18 2.3.4 Validation by protein array and functional experiment ........................................................... 20 2.3.5 Mutation-drug networks and clinical implications ................................................................... 23 2.4 Discussion ................................................................................................................................ 26 2.5 Methods ................................................................................................................................... 27 2.5.1 HotSpot3D and code comparison ............................................................................................. 28 2.5.2 Data preprocessing ................................................................................................................... 28 2.5.3 3D proximal pairs analysis ........................................................................................................ 29 2.5.4 Drug interaction module .......................................................................................................... 31 2.5.5 Cancer mutation data set and cancer types ............................................................................. 31 2.5.6 Identifying mutation and drug-mutation clusters .................................................................... 32 2.5.7 Prioritizing clusters with high cluster closeness ....................................................................... 33 2.5.8 Cluster conservation score ....................................................................................................... 34 2.5.9 Cluster validation ...................................................................................................................... 35 2.5.10 Mutation and drug annotations ............................................................................................. 36 2.5.11 Prioritized variant list for functional validation ...................................................................... 37 2.5.12 Software engineering aspects ................................................................................................ 37 2.6 Supplementary Note ................................................................................................................ 39 2.6.1 Performance assessment and comparison to existing tools .................................................... 39 2.6.2 Intra- and inter-mutation clusters across 19 cancer types ....................................................... 40 2.6.3 Significant mutation clusters with cancer type specificity ........................................................ 40 ii 2.6.4 Mutation-drug networks and clinical implications ................................................................... 41 2.6.5 SUPPLEMENTARY REFERENCES ................................................................................................ 42 2.7 Figures ...................................................................................................................................... 43 Table 1. Top (cluster closeness > 2.5) drug-mutation clusters with HGNC gene families and drug classifications from NIH and DrugBank. .......................................................................................... 56 References ..................................................................................................................................... 58 Chapter 3: Integrative Omics Analyses Broadens Treatment Targets in Human Cancer .......... 61 Preface ........................................................................................................................................... 61 3.2 Abstract .................................................................................................................................... 63 3.3 Background .............................................................................................................................. 64 3.4 Methods ................................................................................................................................... 66 3.4.1 Construction of Database of Evidence for Precision Oncology (DEPO) .................................... 66 3.4.2 Pan-Cancer Cohort and Cancer Types ...................................................................................... 67 3.4.3 Collection of Mutations in Pan-Cancer Cohort ......................................................................... 68 3.4.4 Drug-associated Mutations in Pan-Cancer Cohort ................................................................... 68 3.4.5 Proximity-Based Clustering of Drug-associated Mutations with Pan-Cancer Cohort ............... 70 3.4.6 Druggable Expression Outliers in Pan-Cancer Cohort ............................................................... 71 3.4.7 Fusion Analysis .......................................................................................................................... 72 3.4.8 Proteomic Analysis with CPTAC Mass-Spectrometry Data ....................................................... 72 3.4.9 Cell Line Based Validation ......................................................................................................... 73 3.4.10 Experimental Validation ......................................................................................................... 75 3.4.11 Integrative Omics Analysis of Druggability ............................................................................. 76 3.4.12 Druggability and Demographics .............................................................................................. 76 3.5 Results ...................................................................................................................................... 77 3.5.1 Database of Evidence for Precision Oncology .......................................................................... 77 3.5.2 Drug-associated Mutations in Pan-Cancer Cohort ................................................................... 78 3.5.3 Protein Structure-Based Clustering of Drug-Associated Mutations ......................................... 81 3.5.4 Druggable Gene and Protein

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    180 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us