EC505 STOCHASTIC PROCESSES Class Notes C 2011 Prof

EC505 STOCHASTIC PROCESSES Class Notes C 2011 Prof

EC505 STOCHASTIC PROCESSES Class Notes c 2011 Prof. D. Casta˜non & Prof. W. Clem Karl Dept. of Electrical and Computer Engineering Boston University College of Engineering 8 St. Mary’s Street Boston, MA 02215 Fall 2011 2 Contents 1 Introduction to Probability 11 1.1 AxiomsofProbability ............................... ......... 11 1.2 Conditional Probability and Independence of Events . 13 1.3 RandomVariables ..................................... ..... 13 1.4 Characterization of Random Variables . ........ 14 1.5 ImportantRandomVariables . ........ 19 1.5.1 Discrete-valued random variables . 19 1.5.2 Continuous-valued random variables . ..... 21 1.6 Functions of a Random Variable . ..... 25 1.6.1 Method of equivalent events . 25 1.6.2 Jacobianmethod.................................... 29 1.7 PairsofRandomVariables.............................. ........ 30 1.8 Conditional Probabilities, Densities, and Expectations . ........... 31 1.9 RandomVectors ....................................... 33 1.9.1 Functions of random vectors . 34 1.9.2 Expectations of functions of a random vector . 35 1.10 Properties of the Covariance Matrix . ........... 37 1.11 Gaussian Random Vectors . ....... 38 1.12 Inequalities for Random Variables . ........ 40 1.12.1 Markovinequality ................................ ...... 41 1.12.2 Chebyshev inequality . 41 1.12.3 Chernoff Inequality . 41 1.12.4 Jensen’s Inequality . 42 1.12.5 Moment Inequalities . ..... 42 2 Sequences of Random Variables 45 2.1 Convergence Concepts for Random Sequences . 45 2.2 The Central Limit Theorem and the Law of Large Numbers . ....... 49 2.3 Advanced Topics in Convergence . 51 2.4 Martingale Sequences . 54 2.5 Extensions of the Law of Large Numbers and the Central Limit Theorem . ........ 57 2.6 Spaces of Random Variables . 58 3 Stochastic Processes and their Characterization 61 3.1 Introduction....................................... ....... 61 3.2 Complete Characterization of Stochastic Processes . .......... 62 3.3 First and Second-Order Moments of Stochastic Processes . 62 3.4 Special Classes of Stochastic Processes . ......... 63 3.5 Properties of Stochastic Processes . ......... 66 3.6 Examples of Random Processes . ..... 67 4 CONTENTS 3.6.1 TheRandomWalk.................................... 67 3.6.2 ThePoissonProcess ................................ ..... 68 3.6.3 Digital Modulation: Phase-Shift Keying . 71 3.6.4 The Random Telegraph Process . 73 3.6.5 The Wiener Process and Brownian Motion . 74 3.7 Moment Functions of Vector Processes . ..... 75 3.8 Moments of Wide-sense Stationary Processes . ...... 76 3.9 Power Spectral Density of Wide-Sense Stationary Processes . ..... 77 4 Mean-Square Calculus for Stochastic Processes 81 4.1 Continuity of Stochastic Processes . .......... 81 4.2 Mean-Square Differentiation . ....... 83 4.3 Mean-Square Integration . ....... 85 4.4 Integration and Differentiation of Gaussian Stochastic Processes . ............... 89 4.5 Generalized Mean-Square Calculus . 89 4.6 Ergodicity of Stationary Random Processes . ........ 93 5 Linear Systems and Stochastic Processes 99 5.1 Introduction....................................... ....... 99 5.2 Review of Continuous-time Linear Systems . ....... 99 5.3 Review of Discrete-time Linear Systems . 102 5.4 Extensions to Multivariable Systems . ......... 104 5.5 Second-order Statistics for Vector-Valued Wide-Sense Stationary Processes . 104 5.6 Continuous-time Linear Systems with Random Inputs . 106 6 Sampling of Stochastic Processes 111 6.1 The Sampling Theorem . 111 7 Model Identification for Discrete-Time Processes 117 7.1 Autoregressive Models . ....... 117 7.2 MovingAverageModels ................................. 120 7.3 Autoregressive Moving Average (ARMA) Models . ......... 121 7.4 Dealing with non-zero mean processes . 122 8 Detection Theory 123 8.1 Bayesian Binary Hypothesis Testing . ......... 124 8.1.1 Bayes Risk Approach and the Likelihood Ratio Test . ....... 125 8.1.2 SpecialCases...................................... 127 8.1.3 Examples ........................................ 129 8.2 Performance and the Receiver Operating Characteristic . 131 8.2.1 PropertiesoftheROC................................ 135 8.2.2 Detection Based on Discrete-Valued Random Variables . 138 8.3 Other Threshold Strategies . 142 8.3.1 Minimax Hypothesis Testing . 142 8.3.2 Neyman-Pearson Hypothesis Testing . 144 8.4 M-ary Hypothesis Testing . ....... 145 8.4.1 SpecialCases...................................... 147 8.4.2 Examples ........................................ 148 8.4.3 M-Ary Performance Calculations . 150 8.5 GaussianExamples................................... ....... 153 CONTENTS 5 9 Series Expansions and Detection of Stochastic Processes 155 9.1 Deterministic Functions . 155 9.2 Series Expansion of Stochastic Processes . ........ 156 9.3 Detection of Known Signals in Additive White Noise . ........ 160 9.4 Detection of Unknown Signals in White Noise . ........ 162 9.5 Detection of Known Signals in Colored Noise . ........ 163 10 Estimation of Parameters 165 10.1Introduction...................................... ........ 165 10.2 General Bayesian Estimation . .......... 166 10.2.1 General Bayes Decision Rule . 166 10.2.2 General Bayes Decision Rule Performance . 167 10.3 Bayes Least Square Estimation . .......... 168 10.4 Bayes Maximum A Posteriori (MAP) Estimation . ............. 174 10.5 Bayes Linear Least Square (LLSE) Estimation . .......... 180 10.6 Nonrandom Parameter Estimation . ......... 188 10.6.1 Cramer-RaoBound .................................. 189 10.6.2 Maximum-Likelihood Estimation . ......... 193 10.6.3 Comparison to MAP estimation . ........ 195 11 LLSE Estimation of Stochastic Processes and Wiener Filtering 197 11.1Introduction...................................... ........ 197 11.2HistoricalContext ................................ .......... 198 11.3 LLSE Problem Solution: The Wiener-Hopf Equation . 199 11.4 Wiener Filtering . 201 11.4.1 Noncausal Wiener Filtering (Wiener Smoothing) . 201 11.4.2 Causal Wiener Filtering . 205 11.4.3 Summary ........................................ 219 12 Recursive LLSE: The Kalman Filter 221 12.1Introduction...................................... ........ 221 12.2HistoricalContext ................................ .......... 221 12.3 Recursive Estimation of a Random Vector . ......... 222 12.4 The Discrete-Time Kalman Filter . ........ 225 12.4.1 Initialization ................................. ........ 226 12.4.2 Measurement Update Step . 226 12.4.3 Prediction Step . 227 12.4.4 Summary ........................................ 227 12.4.5 AdditionalPoints................................ ....... 228 12.4.6 Example....................................... 229 12.4.7 Comparison of the Wiener and Kalman Filter . 232 13 Discrete State Markov Processes 233 13.1 Discrete-time, Discrete Valued Markov Processes . ......... 233 13.2 Continuous-Time, Discrete Valued Markov Processes . .......... 239 13.3 Birth-Death Processes . ....... 243 13.4 Queuing Systems . 245 13.5 Inhomogeneous Poisson Processes . ....... 247 13.6 Applications of Poisson Processes . .......... 250 A Useful Transforms 253 6 CONTENTS B Partial-Fraction Expansions 259 B.1 Continuous-Time Signals . ........ 259 B.2 Discrete-Time Signals . 260 C Summary of Linear Algebra 263 C.1 Vectors and Matrices . 263 C.2 Matrix Inverses and Determinants . ........ 266 C.3 Eigenvalues and Eigenvectors . ....... 268 C.4 Similarity Transformation . ............ 269 C.5 Positive-Definite Matrices . ....... 270 C.6 Subspaces . 271 C.7 Vector Calculus . 272 D The non-zero mean case 275 List of Figures 1.1 Illustration of method of equivalent events . ........... 27 1.2 Example of method of equivalent events . ....... 28 1.3 Example of Jacobian method . ...... 29 3.1 Interarrival Times τk. ........................................ 68 3.2 Arrival times T (n) and interarrival times τk............................. 69 3.3 The Poisson Counting.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    282 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us