Properties of Iron-Sulfur Clusters in Heterodisulfide Reductase by Carly Engel A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 3, 2019 Keywords: heterodisulfide reductase, iron-sulfur clusters, electron paramagnetic resonance, redox studies, rapid freeze quench Approved by Evert Duin, Chair, Professor of Biochemistry Doug Goodwin, Associate Professor of Biochemistry Holly Ellis, William P. Molette Professor of Biochemistry Anne Gorden, Associate Professor of Chemistry Robert Pantazes, Assistant Professor of Chemical Engineering Abstract Global warming is a continuing crisis today. It has caused great damage to our planet and health. One of the leading causes of this issue originates from humans releasing an enormous amount of greenhouse gases into the air, in particular CO2 and CH4. Infrared radiation produced by the sun become trapped by these molecules and, therefore, increases the Earth’s temperature drastically. Ultimately, the source of most of the CH4 is biological. One enzyme known to aid in the production of methane is heterodisulfide reductase (Hdr). Hdr recycles the substrates used by the enzyme that catalyzes the methane formation. In addition, reduced ferredoxin (FdRED) is produced and used to push the first step in methanogenesis. The goal of this research is to understand the role of the cofactors, iron-sulfur clusters, and flavin adenine dinucleotide (FAD) in catalysis, with emphasis on the flavin-based electron bifurcation process and heterodisulfide (HDS) reduction. Redox titrations of methyl-viologen hydrogenase: heterodisulfide reductase (Mvh:Hdr) yielded multiple midpoint potentials for different [4Fe-4S]+ and [2Fe-2S]+ clusters. In addition, rapid freeze quench was performed on the whole complex. This allowed the detection of several redox active species, calculation of midpoint potential (Em), and the development of a model of Hdr with assignment of electron paramagnetic resonance (EPR) signal and Em values to specific cofactors in the Hdr complex. Due to the presence of a total of 14 clusters it was not always possible to discern individual signals in the whole Mvh:Hdr complex. Therefore, similar experiments were executed on the isolated HdrB, and HdrBC subunits. ii The HdrB subunit is the site of the HDS reduction. HdrB2 and HdrB2C2 were cloned by Dr. James “Greg” Ferry’s group from Methanosarcina acetivorans into Escherchia coli. Two non- cuboidal clusters were expected in the HdrB subunit. Our preparation contained one [2Fe-2S] cluster and one non-cuboidal [4Fe-4S] cluster. Through further site-directed mutagenesis both sites could be studied separately. The data showed that the non-cuboidal [4Fe-4S] clusters do not show a 1+/2+ transition. In the presence of substrate, a 2+/3+ transition is detected. Surprisingly the HdrB2 and HdrB2C2 preparations are active although only one non-cuboidal cluster is present. iii Table of Contents Abstract ........................................................................................................................................... ii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii List of Schemes ............................................................................................................................. xv List of Equations .......................................................................................................................... xvi List of Abbreviations .................................................................................................................. xvii Chapter 1: Literature Review .......................................................................................................... 1 1.1 Methanogens .................................................................................................................... 1 1.1.1 Methanogenesis......................................................................................................... 2 1.2 Electron Paramagnetic Resonance (EPR) Spectroscopy .................................................. 5 1.2.1 History of Unpaired Electron Studies ....................................................................... 5 1.2.2 Operations of EPR .................................................................................................... 6 1.2.3 Energies Used for EPR ............................................................................................. 8 1.2.4 Line Shapes of EPR Signals ..................................................................................... 9 1.2.5 EPR-Monitored Experiments .................................................................................. 11 1.3 Iron-Sulfur Clusters ........................................................................................................ 13 1.3.1 Initial Iron-Sulfur Cluster Studies ........................................................................... 13 1.3.2 Types of Iron-Sulfur Cluster ................................................................................... 14 1.3.3 Breakdown of Iron-Sulfur Clusters by Molecular Oxygen..................................... 16 1.3.4 EPR Signals of Iron-Sulfur Clusters ....................................................................... 16 1.3.5 Redox Studies and Properties for Iron-Sulfur Clusters ........................................... 18 1.4 Hydrogenases ................................................................................................................. 19 1.4.1 [Ni-Fe] and [NiFeSe] Hydrogenase Properties ....................................................... 20 iv 1.4.2 Redox States of [Ni-Fe] Hydrogenase .................................................................... 22 1.4.3 EPR Signals ............................................................................................................ 23 1.5 Heterodisulfide Reductase.............................................................................................. 26 1.5.1 Electron Bifurcation ................................................................................................ 28 1.5.2 Non-cuboidal Clusters ............................................................................................ 48 1.6 Significance of Research ................................................................................................ 52 Chapter 2: Mvh:Hdr and Isolated Hdr .......................................................................................... 54 2.1 Introduction .................................................................................................................... 54 2.2 Materials and Methods ................................................................................................... 58 2.2.1 Reagents .................................................................................................................. 58 2.2.2 Synthesis of Heterodisulfide (CoM-S-S-CoB; HDS) ............................................. 59 2.2.3 Growing Methanothermobacter marburgensis47 .................................................... 71 2.2.4 Purifying Mvh:Hdr47 ............................................................................................... 72 2.2.6 Separating Mvh from Hdr ....................................................................................... 75 2.2.7 Mvh:Hdr Enzyme Assay ......................................................................................... 75 2.2.8 EPR analysis of Hdr ................................................................................................ 76 2.2.6 EPR monitored-redox titrations .............................................................................. 76 2.2.7 Turn-Over experiments ........................................................................................... 77 2.2.8 EPR monitored-rapid freeze quench ....................................................................... 78 2.3 Results ............................................................................................................................ 79 2.3.1 Mvh:Hdr Results ..................................................................................................... 79 2.3.2 Separated Mvh and Hdr Results ............................................................................. 94 2.4 Conclusion .................................................................................................................... 100 2.5 Future Studies ............................................................................................................... 102 2.5.1 Mvh:Hdr ................................................................................................................ 102 2.5.2 Isolated Mvh ......................................................................................................... 103 Chapter 3: Studies on the isolated subunits of Hdr ..................................................................... 105 3.1 Introduction .................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages191 Page
-
File Size-