
i IBM SPSS Decision Trees 21 Note: Before using this information and the product it supports, read the general information under Notices on p. 104. This edition applies to IBM® SPSS® Statistics 21 and to all subsequent releases and modifications until otherwise indicated in new editions. Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated. Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation. Licensed Materials - Property of IBM © Copyright IBM Corporation 1989, 2012. U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Preface IBM® SPSS® Statistics is a comprehensive system for analyzing data. The Decision Trees optional add-on module provides the additional analytic techniques described in this manual. The Decision Trees add-on module must be used with the SPSS Statistics Core system and is completely integrated into that system. About IBM Business Analytics IBM Business Analytics software delivers complete, consistent and accurate information that decision-makers trust to improve business performance. A comprehensive portfolio of business intelligence, predictive analytics, financial performance and strategy management,andanalytic applications provides clear, immediate and actionable insights into current performance and the ability to predict future outcomes. Combined with rich industry solutions, proven practices and professional services, organizations of every size can drive the highest productivity, confidently automate decisions and deliver better results. As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict future events and proactively act upon that insight to drive better business outcomes. Commercial, government and academic customers worldwide rely on IBM SPSS technology as a competitive advantage in attracting, retaining and growing customers, while reducing fraud and mitigating risk. By incorporating IBM SPSS software into their daily operations, organizations become predictive enterprises – able to direct and automate decisions to meet business goals and achieve measurable competitive advantage. For further information or to reach a representative visit http://www.ibm.com/spss. Technical support Technical support is available to maintenance customers. Customers may contact Technical Support for assistance in using IBM Corp. products or for installation help for one of the supported hardware environments. To reach Technical Support, see the IBM Corp. web site at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your support agreement when requesting assistance. Technical Support for Students If you’re a student using a student, academic or grad pack version of any IBM SPSS software product, please see our special online Solutions for Education (http://www.ibm.com/spss/rd/students/) pages for students. If you’re a student using a university-supplied copy of the IBM SPSS software, please contact the IBM SPSS product coordinator at your university. Customer Service If you have any questions concerning your shipment or account, contact your local office. Please have your serial number ready for identification. © Copyright IBM Corporation 1989, 2012. iii Training Seminars IBM Corp. provides both public and onsite training seminars. All seminars feature hands-on workshops. Seminars will be offered in major cities on a regular basis. For more information on these seminars, go to http://www.ibm.com/software/analytics/spss/training. iv Contents Part I: User's Guide 1 Creating Decision Trees 1 SelectingCategories.......................................................... 6 Validation................................................................... 7 Tree-GrowingCriteria.......................................................... 8 GrowthLimits............................................................ 9 CHAIDCriteria............................................................10 CRTCriteria..............................................................12 QUESTCriteria............................................................13 PruningTrees............................................................14 Surrogates..............................................................15 Options.....................................................................15 MisclassificationCosts.....................................................16 Profits..................................................................17 Prior Probabilities . 18 Scores..................................................................20 MissingValues...........................................................21 SavingModelInformation.......................................................22 Output.....................................................................23 TreeDisplay..............................................................24 Statistics................................................................26 Charts..................................................................29 SelectionandScoringRules.................................................35 2 Tree Editor 37 Working with LargeTrees.......................................................38 TreeMap................................................................39 ScalingtheTreeDisplay....................................................39 NodeSummaryWindow....................................................40 Controlling Information Displayed in the Tree . 41 ChangingTreeColorsandTextFonts...............................................42 CaseSelectionandScoringRules................................................44 FilteringCases............................................................44 SavingSelectionandScoringRules............................................45 © Copyright IBM Corporation 1989, 2012. v Part II: Examples 3 Data assumptions and requirements 48 Effectsofmeasurementlevelontreemodels........................................48 Permanentlyassigningmeasurementlevel......................................51 Variableswithanunknownmeasurementlevel...................................52 Effectsofvaluelabelsontreemodels..............................................52 Assigningvaluelabelstoallvalues............................................54 4 Using Decision Trees to Evaluate Credit Risk 55 Creating the Model............................................................55 Building the CHAIDTreeModel...............................................55 SelectingTargetCategories..................................................56 SpecifyingTreeGrowingCriteria..............................................57 Selecting AdditionalOutput..................................................58 SavingPredictedValues....................................................60 Evaluating theModel..........................................................61 Model Summary Table......................................................62 TreeDiagram.............................................................63 TreeTable...............................................................64 Gains for Nodes...........................................................65 GainsChart..............................................................66 IndexChart..............................................................66 Risk Estimate andClassification...............................................67 PredictedValues..........................................................68 Refining the Model............................................................69 Selecting CasesinNodes...................................................69 ExaminingtheSelectedCases................................................70 AssigningCoststoOutcomes.................................................72 Summary...................................................................76 5 Building a Scoring Model 77 BuildingtheModel............................................................77 EvaluatingtheModel..........................................................78 ModelSummary..........................................................79 vi TreeModelDiagram.......................................................80 RiskEstimate.............................................................81 ApplyingtheModeltoAnotherDataFile............................................82 Summary...................................................................85 6 Missing Values in Tree Models 86 MissingValueswithCHAID.....................................................86 CHAIDResults............................................................88 MissingValueswithCRT........................................................89 CRTResults..............................................................92 Summary...................................................................94 Appendices A Sample Files 95 B Notices 104 Index 107 vii Part I: User's Guide Chapter 1 Creating Decision Trees Figure 1-1 Decision tree The Decision Tree procedure creates a tree-based classification model. It classifies cases into groups or predicts values of a dependent (target) variable based on values of independent (predictor) variables. The procedure provides validation tools for exploratory and confirmatory classification analysis. The procedure can be used for: Segmentation. Identify persons who are likely to be members of a particular group. Stratification. Assign cases into one of several
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages118 Page
-
File Size-