CASP14 Abstract Book

CASP14 Abstract Book

CRITICAL ASSESSMENT OF TECHNIQUES FOR PROTEIN STRUCTURE PREDICTION 14 ABSTRACT BOOK Fourteenth round May-September 2020 1 TABLE OF CONTENTS 191227 .............................................................................................................. 13 iPhord: A protein structure prediction system based on deep learning ................................................ 13 3DCNN_prof ..................................................................................................... 16 Single model quality assessment using 3DCNN with profile-based features ......................................... 16 A2I2Prot ........................................................................................................... 17 Fusion of sequence embedding and sequence alignments for protein contact predictions ................. 17 AILON ............................................................................................................... 19 Protein tertiary structure prediction driven by deep neural network and cmFinder from its amino acid sequence ................................................................................................................................................. 19 AIR .................................................................................................................... 21 AIR: An artificial intelligence-based protocol for protein structure refinement using multi-objective particle swarm optimization ................................................................................................................... 21 AlphaFold2 ....................................................................................................... 22 High Accuracy Protein Structure Prediction Using Deep Learning ......................................................... 22 angleQA ............................................................................................................ 25 AngleQA: protein single-model quality assessment based on torsion angles ........................................ 25 AP_1 ................................................................................................................. 27 AP_1 structure predictions in CASP14 .................................................................................................... 27 BAKER-experimental (Assembly)....................................................................... 28 Protein oligomer structure predictions guided by predicted inter-chain contacts ................................ 28 BAKER-ROSETTASERVER, BAKER (TS) ................................................................ 30 Protein structure prediction guided by predicted inter-residue geometries ......................................... 30 BAKER-ROSETTASERVER, BAKER-experimental (EMA) ...................................... 32 Estimation of Model Quality via Deep Residual Learning ....................................................................... 32 BAKER, BAKER-experimental (Refinement) ....................................................... 34 Model refinement guided by an interplay between Deep-learning and Rosetta................................... 34 Bates_BMM ...................................................................................................... 36 Protein fold construction and complex assembly by employing particle swarm optimization.............. 36 Bhattacharya .................................................................................................... 38 Protein tertiary structure prediction by Bhattacharya group in CASP14 ............................................... 38 1 Bhattacharya-QDeep, Bhattacharya-QDeepU, Bhattacharya-Server ................. 39 Protein model accuracy estimation by Bhattacharya groups in CASP14 ................................................ 39 Bhattacharya, Bhattacharya-Server .................................................................. 40 Protein structure refinement by Bhattacharya groups in CASP14 ......................................................... 40 Bioinsilico_sbi ................................................................................................... 42 Three-dimensional prediction of proteins using a collection of sMotifs ................................................ 42 Bioinsilico_sbi ................................................................................................... 44 Protein contact predictions using a reduced alphabet and direct-coupling analysis ............................. 44 Bioinsilico_sbi, Bioinsilico_sbi_PAIR .................................................................. 46 Assessing the quality of protein structural models using split-statistical potentials ............................. 46 BrainFold .......................................................................................................... 48 Contact Pair Prediction Using a Deep Neural Net................................................................................... 48 CAO-QA1 (High Accuracy Modeling) ................................................................. 51 Collaborative protein structure prediction with deep learning based de novo prediction and model selection .................................................................................................................................................. 51 CAO-QA1(Accuracy Estimation) ........................................................................ 54 AngularQA: Protein Model Quality Assessment with LSTM Networks ................................................... 54 CAO-SERVER(Accuracy Estimation) ................................................................... 57 TopQA: a topological representation for single-model protein quality assessment with machine learning ................................................................................................................................................... 57 CAO-SERVER(Topology) .................................................................................... 60 de novo protein structure prediction using stepwise fragment sampling with...................................... 60 contact prediction and model selection based on deep learning techniques ........................................ 60 ClusPro ............................................................................................................. 62 Hybrid ClusPro server in 2020 CASP/CAPRI rounds ................................................................................ 62 CMH1971 .......................................................................................................... 64 Structure Prediction, Quality Assessment and Contact Prediction by EMAP_CLUST ............................. 64 CUTSP ............................................................................................................... 65 Morphing semi-supervised protein structures predicted using distance and torsion representations with deep graph ranking ......................................................................................................................... 65 DATE ................................................................................................................. 67 2 Template-based Structure Prediction and Interresidue Distances and Orientations Prediction-based Structure Prediction ................................................................................................................................ 67 DeepML ............................................................................................................ 69 Quality Assesment of Protein Models using Graph Convolutional Networks ....................................... 69 DeepMUSICS ..................................................................................................... 69 A novel deep learning framework for protein structure prediction ....................................................... 69 DeepPotential ................................................................................................... 72 Learning deep statistical potentials for protein folding.......................................................................... 72 DELCLAB ........................................................................................................... 74 DellaCorteLab ................................................................................................... 76 Refinement with Improved Restrained Molecular Dynamics ................................................................. 76 DellaCorteLab ................................................................................................... 78 De novo structure prediction with deep learning and molecular mechanics simulation....................... 78 DellaCorteLab ................................................................................................... 80 ProSPr: Protein Structure Prediction via Inter-Residue Distances .......................................................... 80 DESTINI ............................................................................................................. 82 Deep-learning the protein folding code for structure prediction and sequence comparison ............... 82 DMP2................................................................................................................ 84 Tertiary structure and distance predictions with DMPfold2 .................................................................. 84 E2E...................................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    345 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us