Magnetodynamics in Spin Valves and Magnetic Tunnel Junctions with Perpendicular and Tilted Anisotropies QUANG TUAN LE Doctoral Thesis in Physics School of Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2016 KTH Royal Institute of Technology School of Information and Communication Technology TRITA-ICT 2016:21 SE-164 40 Kista ISBN 978-91-7729-072-8 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i Fysik fredagen den 30 sep 2016 klockan 13.00 i Sal C, Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista. © Quang Tuan Le, August 2016 Tryck: Universitetsservice US-AB Abstract Spin-torque transfer (STT) effects have brought spintronics ever closer to practical electronic applications, such as MRAM and active broadband microwave spin-torque oscillator (STO), and have emerged as an increasingly attractive field of research in spin dynamics. Utilizing materials with perpendicular magnetic anisotropy (PMA) in such applications offers several great advantages such as low-current, low-field operation combined with high thermal stability. The exchange coupling that a PMA thin film exerts on an adjacent in-plane magnetic anisotropy (IMA) layer can tilt the IMA magnetization direction out of plane, thus creating a stack with an effective tilted magnetic anisotropy. The tilt angle can be engineered via both intrinsic material parameters, such as the PMA and the saturation magnetization, and extrinsic parameters, such as the layer thicknesses. STOs can be fabricated in one of a number of forms—as a nanocontact opening on a mesa from a deposited pseudospin-valve (PSV) structure, or as a nanopillar etching from magnetic tunneling junction (MTJ)—composed of highly reproducible PMA or predetermined tilted magnetic anisotropy layers. All-perpendicular CoFeB MTJ STOs showed high-frequency microwave generation with extremely high current tunability, all achieved at low applied biases. Spin-torque ferromagnetic resonance (ST-FMR) measurements and analysis revealed the bias dependence of spin-torque components, thus promise great potential for direct gate-voltage controlled STOs. In all-perpendicular PSV STOs, magnetic droplets were observed underneath the nanocontact area at a low drive current and low applied field. Furthermore, preliminary results for microwave auto-oscillation and droplet solitons were obtained from tilted-polarizer PSV STOs. These are promising and would be worth investigating in further studies of STT driven spin dynamics. Keywords: perpendicular magnetic anisotropy, tilted-polarizer, spintronics, STT, MTJ, pseudospin-valve, STO, ST-FMR, magnonics, magnetic droplet, droplet nucleation, droplet annihilation. iii Sammanfattning Effekter av spinnvridmoment (STT) har fört spinntroniken allt närmare praktiska elektroniska tillämpningar, såsom MRAM och den spinntroniska mikrovågsoscillatorn (STO), och har blivit ett allt mer attraktivt forskningsområde inom spinndynamik. Användning av material med vinkelrät magnetisk anisotropi (PMA) i sådana tillämpningar erbjuder flera stora fördelar, såsom låg strömförbrukning och funktion vid låga fält i kombination med hög termisk stabilitet. Den utbyteskoppling (”exchange bias”) en PMA-tunnfilm utövar på ett intilliggande skikt med magnetisk anisotropi i planet (IMA) kan få IMA-magnetiseringsriktningen att vridas ut ur planet, vilket ger en materialstack med en effektivt sett lutande magnetisk anisotropi. Lutningsvinkeln kan manipuleras med både inre materialparametrar, såsom PMA och mättningsmagnetisering, och yttre parametrar, såsom skikttjocklekarna. STO:er kan tillverkas som flera olika typer - som en nanokontaktsöppning på en s.k. mesa av en deponerad pseudospinnventilstruktur (PSV) eller som en nanotråd etsad ur en magnetisk tunnlingsövergång (MTJ) – och bestå av mycket reproducerbar PMA eller av skikt med på förhand bestämt lutning av dess magnetiska anisotropi. MTJ-STO:er av CoFeB med helt vinkelrät anisotropi visar högfrekvent mikrovågsgenerering med extremt stort frekvensomfång hos strömstyrningen, detta vid låg biasering. Mätning och analys av spinnvridmoments-ferromagnetisk resonans (ST-FMR) avslöjade ett biasberoende hos spinnvridmomentskomponenter, vilket indikerar en stor potential för direkt gate-spänningsstyrda STO:er. I helt vinkelräta PSV-STO:er observerades magnetiska droppar under nanokontaktområdet vid låg drivström och lågt pålagt fält. Dessutom erhölls preliminära resultat av mikrovågssjälvsvängning och av s.k. ”droplet solitons” hos PSV-STO:er med lutande polarisator. Dessa är lovande och skulle vara värda att undersökas i ytterligare studier av STT-driven spinndynamik. Nyckelord: vinkelrät magnetisk anisotropi, lutande polarisator, spinntronik, STT, MTJ, pseudospinnventil, STO, ST-FMR, magnonics, magnetisk droppe, nukleering av droppe, anihilering av droppe. iv Acknowledgement I am deeply grateful to my supervisor, Prof. Johan Åkerman, who was the one to give me the opportunity, to aid me getting it up and running; and showed your precious support all along to complete my projected research objectives. Also I would like to thank you very much, Johan, Maria, Hanna, Silas and Pontus, for creating and sharing joyful moments, which my family and I will never forget. Massive! To get this thesis printed, I would like to specifically thank Dr. Sun-Jae Chung. There have been many times my focus appeared to drift away and my motivation dissipated, every time you showed your tireless eagerness and passion to science that motivated and helped me getting a grip and pushing towards. Without you and your wholehearted efforts, I could not have it done. Magnificent! It is little wonder I could reach this significant milestone, given the knowledge and experience I benefited from the graduate Majid Mohseni and Sohrab Sani, as well as my current colleagues: Anders Eklund, Fatjon Qejvanaj, Hamid Mazraati, Sheng Jiang and Amir Banuazizi in Applied Spintronics group at KTH. A brief time working at NanOsc AB with Johan Persson and Fredrik Magnusson was valuable, too, and I am really appreciated. Influential! I have also got generous helps, in many ways, from scores of friends: Reza Nikpars, Magnus Lindberg, Himanshu Kataria, Cecillia Aronsson and Helena Strömberg (Acreo, IRnova, Ascatron); Christian Ridder, Per-Erik Hellström, Gabriel Roupillard, Yong-bin Wang, Tingsu Chen, Konstantinos Garidis, Ganesh Jayakumar, Arash Salemi, Hossein Elahipanah and Ahmad Abedin (EKT, ICT-KTH); Philipp Dürrenfeld, Afshin Houshang and Martina Ahlberg (Götenborgs Universitet); and technical supports from the Electrum staff, to work out my device processing inside KTH’s Electrum Fab and Chalmers’ MC2 Fab. Handy! The working environment is really enjoyable, thanks to Madeleine Printzsköld – my dedicated department administrator to simplify the related paperwork – and others along the corridor: Mats Göthelid, Sergei Popov, Ilya Sychugov, Markus Soldemo, Tobias Övergaard, Milad Yazdi, Roodabeh Afrasiabi, Federico Pevere, Shaozheng Ji, Yashar Hormozan, Miao Zhang, Viktor Jonsson and many others. Warm! v My sincere and lasting thanks are to all my beloved: Ngoc Anh, Ha Vy, Hoai Nam, my parents and parents-in-law, my brothers and sisters. This is the work I want to dedicate after your tremendous sacrifice and marvelous patience along the road. Your love, encouragement and tolerance invaluably helped to stiffen my back, harden my mind, and keep the strands of my life and work together. This little book marked the end of one chapter so a new chapter of life begins, but I always believe that I can count on you. Permanent! Tuan Le Stockholm – August 08, 2016 vi Table of Contents Abstract ...................................................................................... iii Acknowledgement ........................................................................ v Table of Contents........................................................................ vii List of Publications/Manuscripts ................................................ ix List of Acronyms and Symbols .................................................... xi 1. General introduction and thesis outline .................................. 1 2. Methodology ............................................................................ 5 2.1 Sputtering ............................................................................................. 5 2.2 Chemical vapor deposition .................................................................. 6 2.3 Evaluation of magnetic properties ...................................................... 7 2.4 Device fabrication procedure ............................................................... 8 2.5 Device measurement ........................................................................... 12 2.5.1 dc characterization ................................................................... 12 2.5.2 Microwave measurement ......................................................... 13 2.5.3 ST-FMR measurement and analytical model ......................... 13 3. Perpendicular magnetic anisotropic thin films.......................17 4. Spin dynamics in all-perpendicular MTJ STOs ...................... 21 4.1 Development of all-perpendicular MTJs ........................................... 21 4.2 Spin dynamics in all-perpendicular MTJ STOs ................................ 26 4.2.1 Device fabrication and dc characterization ............................ 26 4.2.2 Magnetodynamic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages95 Page
-
File Size-