Review of the 3-2-1 Euler Angles: a Yaw–Pitch–Roll Sequence

Review of the 3-2-1 Euler Angles: a Yaw–Pitch–Roll Sequence

Review of the 3-2-1 Euler Angles: a yaw–pitch–roll sequence by H. Alemi Ardakani & T. J. Bridges Department of Mathematics, University of Surrey, Guildford GU2 7XH UK — April 15, 2010— 1 Introduction The 3 − 2 − 1 Euler angles are one of the most widely used parameterisations of rotations. O’Reilly gives a history on page 184 of [4]. This review will give an overview of the important feautures of this set of Euler angles, and show that they are the ones used in [2] and [3]. Let {E1, E2, E3} be a basis for a fixed spatial frame, and let {e1, e2, e3} be a basis for a body frame. The 3 − 2 − 1 Euler angles provide an orthogonal matrix Q which maps {E1, E2, E3} to {e1, e2, e3}, Q {E1, E2, E3} −−−−−→ {e1, e2, e3} by breaking the action of Q up into three steps {E1, E2, E3} −→ {a1, a2, a3} −→ {b1, b2, b3} −→ {e1, e2, e3} , where {a1, a2, a3} and {b1, b2, b3} are intermediate frames of reference. 2 Map from Ej to aj : the yaw rotation In this section the details of the map L(ψ,E3) {E1, E2, E3} −−−−−→ {a1, a2, a3} are constructed using the rotation tensor L(ψ, E3)=(I − E3 ⊗ E3) cos ψ + E3 sin ψ + E3 ⊗ E3 , (2.1) b where (a ⊗ b) c := (b · c) a , a, b, c ∈ R3 , 1 ψ , yaw θ , pitch φ , roll Figure 1: Schematic of the yaw-pitch-roll motion in terms of the Euler angles ψ , φ and θ. and 0 −a a 3 2 a := a3 0 −a1 . (2.2) b −a2 a1 0 The hat-matrix has the property that a b = a × b , a, b ∈ R3 . b The rotation (2.1) is a counterclockwise rotation about the Z−axis as shown schemat- ically in Figure 1. The new basis is a1 = L(ψ, E3)E1 = E1 cos ψ + E3 × E1 sin ψ a2 = L(ψ, E3)E2 = E2 cos ψ + E3 × E2 sin ψ a3 = L(ψ, E3)E3 = E3 . Using the identities E1 × E2 = E3 , E3 × E1 = E2 , E2 × E3 = E1 , the matrix representation of the map is a cos ψ sin ψ 0 E 1 1 a2 = − sin ψ cos ψ 0 E2 . a3 0 01 E3 This is the first equation of (6.23) on page 184 of [4]. 2 3 Map from aj to bj : the pitch rotation In this section the details of the map L(θ,a2) {a1, a2, a3} −−−−−→ {b1, b2, b3} are constructed using the rotation tensor L(θ, a2)=(I − a2 ⊗ a2) cos θ + a2 sin θ + a2 ⊗ a2 , (3.3) where b a2 = −E1 sin ψ + E2 cos ψ . The new basis is b1 = L(θ, a2)a1 = a1 cos θ + a2 × a1 sin θ b2 = L(θ, a2)a2 = a2 b3 = L(θ, a2)a3 = a3 cos θ + a2 × a3 sin θ , with matrix representation, b cos θ 0 − sin θ a 1 1 b2 = 0 1 0 a2 . b3 sin θ 0 cos θ a3 This is the second equation of (6.23) on page 184 of [4]. 4 Map from bj to ej : the roll rotation In this section the details of the map L(φ,b1) {b1, b2, b3} −−−−−→ {e1, e2, e3} are constructed using the rotation tensor L(φ, b1)=(I − b1 ⊗ b1) cos φ + b1 sin φ + b1 ⊗ b1 , (4.4) where b b1 = a1 cos θ − a3 sin θ . The new basis is e1 = L(φ, b1)b1 = b1 e2 = L(φ, b1)b2 = b2 cos φ + b1 × b2 sin φ e3 = L(φ, b1)b3 = b3 cos φ + b1 × b3 sin φ , with matrix representation, e 1 0 0 b 1 1 e2 = 0 cos φ sin φ b2 . e3 0 − sin φ cos φ b3 This is the third equation of (6.23) on page 184 of [4]. 3 5 The composite rotation from Ej to ej In this section the details of the map L(φ,b1)L(θ,a2)L(ψ,a3) {E1, E2, E3} −−−−−−−−−−−−−−−→ {e1, e2, e3} are constructed. Using the above results e 1 0 0 cos θ 0 − sin θ cos ψ sin ψ 0 E 1 1 e2 = 0 cos φ sin φ 0 1 0 − sin ψ cos ψ 0 E2 e3 0 − sin φ cos φ sin θ 0 cos θ 0 01 E3 cos θ 0 − sin θ cos ψ sin ψ 0 E 1 = sin φ sin θ cos φ sin φ cos θ − sin ψ cos ψ 0 E2 cos φ sin θ − sin φ cos φ cos θ 0 01 E3 cos θ cos ψ cos θ sin ψ − sin θ E 1 = sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ E2 . cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ E3 Write this as e = QT E . Then cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ Q = cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ . − sin θ sin φ cos θ cos φ cos θ (5.5) To see that this is the correct Q, construct Q directly. 6 Direct construction of Q By definition Q = L(φ, b1)L(θ, a2)L(ψ, E3) . In order to construct a matrix representation of the composite rotation, use the property of rotation tensors L(θ, Rb)= R L(θ, b) RT . when R is any proper rotation. Define A3 = L(ψ, E3) , A2 = L(θ, E2) , A1 = L(φ, E1) . Then T L(θ, a2)= L(θ, A3E2)= A3A2A3 , 4 and L(φ, b1) = L(φ, L(θ, a2)a1) T = L(θ, a2)L(φ, a1)L(θ, a2) T T T = A3A2A3 L(φ, a1)A3A2 A3 T T T = A3A2A3 L(φ, A3E1)A3A2 A3 T T T T = A3A2A3 A3A1A3 A3A2 A3 T T = A3A2A1A2 A3 . Hence T Q = A A A AT AT A A AT A = A A A = AT AT AT . 3 2 1 2 3 3 2 3 3 3 2 1 1 2 3 with matrix representation T 1 0 0 cos θ 0 − sin θ cos ψ sin ψ 0 Q = 0 cos φ sin φ 0 1 0 − sin ψ cos ψ 0 , 0 − sin φ cos φ sin θ 0 cos θ 0 01 confirming the form of Q. 7 Angular velocities To compute angular velocities start with the representation cos ψ − sin ψ 0 cos θ 0 sin θ 10 0 Q = A3A2A1 = sin ψ cos ψ 0 0 1 0 0 cos φ − sin φ , 0 0 1 − sin θ 0 cos θ 0 sin φ cos φ and use the properties ˙ T ˙ ˙ T ˙ ˙ T ˙ A1A1 = φ E1 , A2A2 = θ E2 , A3A3 = ψ E3 . b b b Now differentiate Q, Q˙ = A˙ 3A2A1 + A3A˙ 2A1 + A3A2A˙ 1 . The body angular velocity is Ωb := QT Q˙ c T T T ˙ = A1 A2 A3 Q T T T ˙ ˙ ˙ = A1 A2 A3 A3A2A1 + A3A2A1 + A3A2A1 ˙ T T ˙ T ˙ = ψ A1 A2 E3A2A1 + θ A1 E2A1 + φ E1 . b b b 5 But T \T A1 E2A1 = (A1 E2) , and b T A1 E2 = h(I − E1 ⊗ E1) cos φ − sin φE1 + E1 ⊗ E1i E2 b = E2 cos φ − sin φE1 × E2 = E2 cos φ − E3 sin φ . Similarly T \T A2 E3A2 = (A2 E3) , and b T θ θ A2 E3 = h(I − E2 ⊗ E2) cos − sin E2 + E2 ⊗ E2i E3 b = E3 cos θ − sin θE2 × E3 = E3 cos θ − E1 sin θ . Continuing T T T \ A1 A2 E3A2A1 = (A1 (E3 cos θ − E1 sin θ) , and b T T A1 (E3 cos θ − E1 sin θ) = −E1 sin θ + cos θ A1 E3 = −E1 sin θ + cos θ(E3 cos φ − E1 × E3 sin φ) = −E1 sin θ + cos θ(E3 cos φ + E2 sin φ) = −E1 sin θ + E2 cos θ sin φ + E3 cos θ cos φ . Substitute into the expression for the body angular velocity, b ˙ Ω = ψ(−E1 sin θ + E2 cos θ sin φ + E3 cos θ cos φ) +θ˙(E2 cos φ − E3 sin φ)+ φ˙E1 = E1(φ˙ − ψ˙ sin θ)+ E2(ψ˙ cos θ sin φ + θ˙ cos φ) +E3(ψ˙ cos θ cos φ − θ˙ sin φ) . b In [4] the body angular velocity is denoted by ω0R and the above expression for Ω agrees with ω0R on page 188 of [4]. In matrix form b ˙ Ω1 1 0 − sin θ φ b ˙ Ω2 = 0 cos φ cos θ sin φ θ . b Ω3 0 − sin φ cos θ cos φ ψ˙ Write this is Ωb = B−1Θ˙ . 6 Then 1 sin φ tan θ cos φ tan θ B = 0 cos φ − sin φ . 0 sin φ sec θ cos φ sec θ As shown below in §9, this expression agrees with [B] := B in [2] and in [3]. 8 Small angle approximation For small angle approximation rewrite the body representation of the angular ve- locity as b ˙ ˙ Ω1 φ 0 0 − sin θ φ b ˙ ˙ Ω2 = θ + 0 cos φ − 1 cos θ sin φ θ . b Ω3 ψ˙ 0 − sin φ cos θ cos φ − 1 ψ˙ Hence for small angles b ˙ ˙ Ω1 φ 0 0 −θ φ b ˙ 1 2 ˙ Ω2 = θ + 0 − 2 φ φ θ + ··· .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us