Appendix Fm =F~M =~(Am +Ibm)

Appendix Fm =F~M =~(Am +Ibm)

Appendix A.l Fourier Series [Benedetto 1996 B, Bracewell1986 B, Carslaw 1930 B] A .1.1 General Rules period: x(t) = x(t + T) basic circular frequency: OJ OJ 2n / T T = 2n / OJ = 2n / OJ1 = 1 = complex Fourier series: complex coefficients: m=oo 1 T x(t) = x(t+ T) = IJmexp(-imOJt) Fm = - f x(t) exp(+imOJt)dt m=-oo T o real periodic functions: coefficients: x(t) = x(t+ T) = x*(t) Fo = Fo* = llo = Ao Fm =F~m =~(am +ibm) =.!. ~exp(iam} 2 real Fourier series I: real coefficients: x(t) = x(t+ T) = x*(t) 1 T 00 00 ao = - f x(t)dt T o =ao+ Lamcos(mOJt) + Lbmsin(mOJt) m=1 m=1 2 T am = - f x(t)cos(mOJt)dt T o 2 T bm =-f x(t)sin(mOJt)dt T o real Fourier series TI: real parameters: x(t) = x{t+ T) = x*{t) Ao =ao 00 [2 2]112 = Ao + L~cos(mOJt-am} Am = am +bm ~O m=1 am = arc tan(bm / am} 480 real even periodic functions: coefficients: x{t) = x{t + T) = x * (t) = x{ -t) Fo = Fo* = ao = Ao 1 1 Fm =F-m =Fm *=-a 2 m =-A2 m um =O;bm =0 real odd periodie functions: coefficients: x{t) = x{t+ T) = x*{t) = -x{-t) Fo =ao =Ao = 0 Fm =-F-m =-Fm *=..!..ib 2 m um = ±tr 12;am = 0 bm = Am sign( Um) A .1. 2 Real Periodie Functions Norrnalized parameters: Cü =Cü, = 1 and T =2tr a) Square wave: x{t) = x{t + 2tr) = sign(sin t) = i[sint + ..!..sin 3t + ..!..sin 5t + ... ] tr 3 5 • • 1 -T .2'Tr -2T .1T t -1 b) Asymmetrie sawtooth: x{t)=x{t+2tr)=xltr for _tr:s;x+tr=~(sint _ sin2t + sin3t _+ ... ) tr 1 2 3 481 e) Symmetrie sawtooth: 2X / n for - n / 2 ~ x ~ + n / 2 } x{t) = x{t + 2n) = { 2 - (2x / n) for + n /2 ~ x ~ +3n /2 =-28(.1'3 smt-zsm t+zsm1 '5 t-+ ... ) n 3 5 I d) Modulus of sine: 2 4 (COS2t cos4t cos6t ) x{t)=x{t+2n)= Ismtl=--- . --+--+--+ ... n n 1·3 3·5 5·7 I e) Reetified sine: . ). 1 1. 2 (cos 2 t cos 4 t cos 6 t ) x{t)=x{t+2n)=H( smt ·smt=-+-smt-- --+--+--+... n 2 n 1·3 3·5 5·7 482 f) Rectangle: I für Itl < 'C I 2} x( t) = x( t + T) = II( t I 'C) = {1/ 2 for Itl = 'C I 2 o für Itl > 'C I 2 =~+3.. fm-1sin(m'C/2)cosmt with 'C<2n 2n n m;1 x g) Simple Fourier se ries a) Sums valid für 0 < t < 2n: ~LJ m -I.sm mt = -1 ( n - t ) m;1 2 fm-1cos mt = -..!.Cn[2(1- cost)] m;1 2 483 ß) Sums valid for r2 < 1: i rmsinmt = rSint[ 1-2reost+ r2 rl m=\ I m-Irmsinmt = are tan{r sint(1- reos trI} m=1 = -I ~>meos mt = (1- reos t)[ 1-2reos t + r2 ] m=1 Im-1rmeos mt = -2. en{ 1-2reost+ r2 } m=l 2 484 A • 2 Fourier Transformation [Benedetto 1996 B, Bracewell 1986 B, Campbell & Foster 1948 B, Carslaw 1930 B, Champeney 1973 B, Erdelyi et al. 1954 B, Poularikas 1995 B, Zayed 1996 B] A .2. 1 General Rules function: Fourier transforrn: 1 +~ +~ x( t) = - f F( w) exp( -irot )dw F(w) = f x(t)exp(+irot)dt 27r _~ -~ real function: x(t) = x *(t) F( -w) = F * (w) even function: 1 ~ ~ x(t) = x( -t) = - f F( w) cos wt· dw F( w) = F( - w) = 2 f x( t) cos wt . dt 7r o 0 odd function: .~ ~ x(t) = -x(-tl = -~ f F( w) sin rot· dw F( w) = -F(-w) = 2i f x(t) sin rot· dt 7r o 0 x(-t) F(-w) x(t / -r) -r F(w-r) x(t- -r) exp(iw-r) F(w) t n x(t) (_i)n d n F( w) / dwn co rIx(t) i f F( w') dw' -~ dnx(t)/ dtn (-iw)n F(w) t f x(t')dt' (i / w)F(w) -~ product: convolution: +~ 27r Xl (t) X2 (t) f FI(Q)F2(w-Q)dQ -~ convolution: product: +~ f XI( -r)X2(t- -r)d-r FI (w ) F2(w) -~ autocorrelation: power spectrum: +~ Wiener-Khintchine theorem x(-r)x(-r+t)d-r f IF(w)12 ~ x(t / 1")cosQt ~[F( 1"(w +Q)) + F( 1"(w - Q))] 2 x(t / -r)sinQt ;i [F( 1"(w + Q)) - F( 1"(w -Q))] 485 A. 2.2 Real Functions funetion: Fourier transforrn: I +- +- x( t) = - f F( OJ) exp( -iOJt )dOJ F(OJ) = x(t)exp(+iOJt)dt 27r f I -- 27rÖ(OJ)-- cosnt 7r[ Ö(OJ - n) + Ö(OJ + n)] sinn-r i7r[ ö( OJ - n) - ö( OJ + n)] Dirae delta function Ö: ö(t) I ö(t --r) exp(iOJ'Z') dßö('Z')/ dtß [-iOJ t sign function: 2i - signt OJ Heavyside unit step H: i H(t) = .!.[I + signt] 7rÖ(OJ)+- 2 OJ H(t) exp(-at) [a -/OJ. r l rectangle function ll: fO'IX 1<l/2} ll(t)= r1/2forlxl=1/2 sinc( OJ / 27r) = ~sin( OJ / 2) OJ o for lxi> 1/ 2 triangle function A: { 1 -lxi for lxi :5 1} A(t) = sinc2(OJ / 27r) = ~sin2 (OJ / 2) o for lxi ~ I OJ sin 7rt sinct=-- ll( OJ / 27r) 7rt sinc2t A(OJ / 27r) 2i sin2( OJ / 2) ~ll(t-~) - ll(t+~) OJ ll(t)cos7rt -1[.sznc (OJ--- I) +sznc. (OJ-+- 1)] 2 27r 2 27r 2 ll(t)sin27rt ~ [sinc( 2: -1) - sinc( 2: + 1) ] exp{ -(t / 'Z')2} 7r1/2 'Z' exp{ -( OJ'Z' / 2)2 } t exp( -7rt2) i(27r)-1 OJexp{ _OJ 2 / 47r} Itl- 1I2 127r / OJII/2 486 1I2 Itl- sign t I'1 2 n I m1" 2slgnm . exp(-Itl) 2[I+ m2 t exp( -I tl) sign t inm[l+ m2t exp( -Itl)sinc(x In) arctan(21 ( 2) exp(-t)H(t) [1-imrl t·exp(-t)H(t) [1-imr2 sech 1rX = [cosh 1rX t sech( m I 2) = [cosh ( ml 2) t 2 sech21rX = [cosh 1rX r m[ n sinh ( m I 2) t tanht i[ sinh ( m / 2) t ll(t)[ 1- 4t2] ;2 [( m / 2r l sin( m 12) - cos( m / 2)] nSinc(2:)+ (~}inc(2: -1) ll(t)cos2m + n sinc( ~+ 1) 2 2n ln[ 1+ Cl' / t)2 ] 2n m-I [1- exp( -mr)] 2 2 ln[ r +t ] 2n m-I [exp( -mT) - exp( -mr)] T2 +t2 2[t2 + r2t (n / r)exp[ -Tim!] Bessel function Jo: Jo(t / r) 2ll( mr 12)[ r-2 - m2t /2 Bessel functions: }zn: Chebyshev polynomials T2n : 2 ll(mr/2)T2n (mr) J2n (t/r) [-2r -m2f2 Bessel functions Jm: Legendre polynomials Pn: r Il2J dt) in(2ntl/2 ·ll(m/2)·Pn(m) n+-2 Legendre polynomials Pn: Bessel functions Jm: ll(t/2)Pn(t) in (2n Im )112 J I (m) n+-2 Chebyshev polynomials Tn: Bessel functions Jn: ll(t / 2) Tn (t) ninJn(m) [ I-t2f2 487 A • 3 Laplace Transformation [Abramowitz & Stegun 1965 B, Bracewell 1986 B, Doetsch 1970 B, Doetsch 1971/73 B, Erdelyi et al. 1954 B, Pöschl 1956 B, Poularikas 1995 B, Zayed 1996 B] A.3.1 General Rules For the definition of the convolution see (3.2 - 24a&b). If F(t) and F(t) are continuous at t = 0, then F(t = +0) and F(t = +0) can be replaced by F(O) and F(O). ~ L{F(t)} = f F(t)exp(-pt)dt o L{ aFI (t) + bF2 (t)} = aF1(p)+bF2 (p) L{F(at)} = F(p/ a) L{H(t-to) F(t-to)} = F(p) exp( -top), to > 0 L{(-tt F(t)} = dnF(p)/ dpn L{ exp( +Pot) F(t)} = F(p- Po) L{F(t)} = pF(p)-F(t=+o) L{F(t)} = p2F(p)-pF(t=+O)-F(t=+o) LU F(t)dt} = p-1F(p) T L{F(t) = F(t+T)} = [1- e-Tp r f F(t)e-tPdt, F(t) periodic o L{F1(t)* F2 (t)} = F1 (p) F2 (p), convolution where F1(t < 0) = F2 (t < 0) = 0 488 A. 3.2 Heaviside and Dirac Functions This list eontains Laplaee transforms of the Heaviside step funetion H(t), the Dirae delta funetion &,.t) and its derivatives 8n)(t). In these equations t = +0 indieates a time just after t =O. L{c5(t-to)} exp( -to p), to > 0 L{ :r: c5(t - to)} = L{ c5(n)(t - to)} = pn exp( -top) L{ c5(t - (+Ü))} =1 L{:r: c5(t-{+Ü))} =L{c5(n)(t-{+ü))} L{c5{t)} =112 L{H(t-to)} =p-1exp(-top), to>O L{H{t)} =l/p L{~{ _1)n H(t - ~nr)} 489 A.3.3 Real Functions L{(;::)!} L{exp( -at)} =(p+arl L{texp(-at)} =(p+ar2 L{ (;::)! exp (-at)} =(p+ar o L{ exp( -at) - exp( -bt)} = [(p+a)(p+b)t b-a L{sin at} = a[p2 + a2 t L{eos at} = p[p2 +a2t L{ sin at exp( -bt)} =a [(p+b) 2+a 2]-1 L{eos at exp( -bt)} =(p+b)[(p+b)2 +a2( L{sinh at} =a[p2 - a2 rl L{eosh at} = p[p2 -a2t Il2 -1/2 L{( 1ftr } =p 0 -(o+.!.) L{ 4 n! t(O-1I2)} =p 2 (2n)!-fii L{Jo(at)} =[p2 +a2r1/2 L{t sin at} = 2ap[p2 + a2 r2 L{t eos at} =(p2 _a2)[p2 +a2t L{t-Isin at} = are tan ( a / p) L{sin2( ~)} =(a2 /2p)[p2 + a2 t L{lsinatl} = a[p2 + a2 t tanh(2a /rep) L{+fn t} =-p-I[fnp-C] C=O.5772 ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us